期刊文献+

一类具时滞的Gompertz捕食模型的稳定性分析 被引量:2

Stability Analysis of a Gompertz Predator-prey Model with Time Delay
下载PDF
导出
摘要 研究一类具有时滞的Gompertz增长率的捕食-被捕食模型,通过分析特征方程讨论了正平衡点的局部稳定性;通过构造适当的Lyapunov泛函,得到了保证系统正平衡点全局渐近稳定的充分条件,并讨论了在正平衡点附近Hopf分支的存在性问题.当τ=0时,应用微分方程定性理论,得到了系统存在极限环的充分条件. A predator-prey model with time delay and Gompertz growth rate is investigated.The local stability of a positive equilibrium is discussed by analyzing the corresponding characteristic equation.By constructing a suitable Lyapunov functional,the sufficient conditions are derived for the global asymptotic stability of the positive equilibrium.The existence of Hopf bifurcation is also addressed.When the time delay equals to 0,by using the qualitative theory of ordinary differential equations,the sufficient condition is obtained for the existence of limit cycle.
出处 《北华大学学报(自然科学版)》 CAS 2011年第1期18-22,共5页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(10671209,11071254)
关键词 时滞 HOPF分支 极限环 LYAPUNOV泛函 稳定性 time delay Hopf bifurcation limit cycle Lyapunov functional stability
  • 相关文献

参考文献5

  • 1Ou L. The Asymptotic Behaviors of Astage-structured Autonomous Predator-prey System with Time delay [J]. J Math Anal Appl,2003,283 : 534-548.
  • 2J Lopez-G6mez, R Ortega, A Tineo. The Periodic Predator-prey Lotka-Volterra Model [J]. Advances in Differential Equations, 1996,1 (3) :403-423.
  • 3Jianwen Jia,Chunhua Li. A Predator-Prey Gompertz Model with Time Delay and Impulsive Perturbations on the Prey [J]. Discrete Dynamics in Nature and Society,2009.
  • 4Beretta E, Kuang Y. Global Analyses in Some Delayed Ratio-dependent Predator-prey Systems [J]. Nonlinear Anal Theory, Method & Appl,1998,32(3) :381-408.
  • 5Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M]. New York:Academic Press, 1983.

同被引文献11

  • 1PIOTROWSKA M J, URSZULA F. The nature of Hopf bifurcation for the Gompertz model with delays I J]. Mathematical and Computer Modelling, 2011,54:2183 2198.
  • 2JIA J W,LI C H. A predator-prey Gompertz model with time delay and impulsive perturbations on the prey[J]. Discrete Dynamics in Nature and Society, 2009,155: 1- 15.
  • 3WANG X, SONG Q, SONG X Y. Analysis of a stage structured predator-prey Gompertz model with distur- bing pulse and delay[J]. Applied Mathematical Model- 1ing,2009,33:4231 4240.
  • 4YU Y M, WANG W D, LU Z Y. Global stability of Gompertz model of three competing populations [J ]. Journal of Mathematical Analysis and Applications, 2007,334:333-348.
  • 5KUANG Y. Delay differential equations with applica- tions in population dynamics[M]. New York: Academic Press, 1993 : 43-55.
  • 6HASSARD B, KAZARINOFF D, WAN Y. Theory and applications of Hopf bifurcation[M]. Cambridge: Cam- bridge University Press, 1981 : 129-144,.
  • 7Kuang Y. Delay Differential Equations with Applications in Population Dynamics [ M ]. New York: Academic Press, 1993: 43 -55.
  • 8Hassard B, Kazarinoff D, WAN Y. Theory and Applications of Hopf Bifurcation [ M ]. Cambridge : Cambridge University Press, 1981 : 129-144.
  • 9田晓红,徐瑞,王丽丽.一类具时滞和收获的捕食模型的稳定性与Hopf分支[J].工程数学学报,2010,27(4):684-692. 被引量:6
  • 10张茜,刘兵,石丽云.在脉冲污染环境中具有阶段结构的捕食食饵Gompertz模型的动力学性质[J].生物数学学报,2010,25(2):299-307. 被引量:6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部