摘要
考虑非线性高阶多点边值问题x(n)(t)=f(t,x(t),x'(t),…,x(n-1)(t))+e(t),t∈(0,1),x(i)(0)=0,i=0,1,…,n-2,x(n-2)(1)=∑m-2j=1βjx(n-2)(ηj{)解的存在性,这里f:[0,1]×n→是连续函数,e(t)∈L1[0,1],βj(j=1,2,…,m-2)为符号不全相同的实数,0〈η1〈η2〈…〈ηm-2〈1.利用Mawhin连续性定理对于上述共振条件下的非线性n阶多点边值问题建立了解的存在性结果.
The existence of nonlinear higher order multi-point boundary value is considered, x(n)(t)=f(t,x(t),x′(t),…,x(n-1)(t))+e(t),t∈(0,1), x(i)(0)=0,i=0,1,…,n-2, x(n-2)(1)=∑m-2j=1βjx(n-2)(ηj), where f:×Rn→R is a continuous function,e(t)∈L1, all the βj(j=1,2,…,m-2) are real numbers and have not the same sign,and 0η1η2…ηm-21. By using the Mawhin's continuation theorem,an existence result of solutions for the above nonlinear higher order multi-point boundary value at resonance is obtained.
出处
《北华大学学报(自然科学版)》
CAS
2011年第1期29-36,共8页
Journal of Beihua University(Natural Science)
基金
吉林省教育厅“十一五”科学技术研究项目(吉教合字2008-136)