期刊文献+

一类高阶多点边值问题在共振条件下的可解性

Solvability of a Higher Order Multi-Point Boundary Value Problem at Resonance
下载PDF
导出
摘要 考虑非线性高阶多点边值问题x(n)(t)=f(t,x(t),x'(t),…,x(n-1)(t))+e(t),t∈(0,1),x(i)(0)=0,i=0,1,…,n-2,x(n-2)(1)=∑m-2j=1βjx(n-2)(ηj{)解的存在性,这里f:[0,1]×n→是连续函数,e(t)∈L1[0,1],βj(j=1,2,…,m-2)为符号不全相同的实数,0〈η1〈η2〈…〈ηm-2〈1.利用Mawhin连续性定理对于上述共振条件下的非线性n阶多点边值问题建立了解的存在性结果. The existence of nonlinear higher order multi-point boundary value is considered, x(n)(t)=f(t,x(t),x′(t),…,x(n-1)(t))+e(t),t∈(0,1), x(i)(0)=0,i=0,1,…,n-2, x(n-2)(1)=∑m-2j=1βjx(n-2)(ηj), where f:×Rn→R is a continuous function,e(t)∈L1, all the βj(j=1,2,…,m-2) are real numbers and have not the same sign,and 0η1η2…ηm-21. By using the Mawhin's continuation theorem,an existence result of solutions for the above nonlinear higher order multi-point boundary value at resonance is obtained.
出处 《北华大学学报(自然科学版)》 CAS 2011年第1期29-36,共8页 Journal of Beihua University(Natural Science)
基金 吉林省教育厅“十一五”科学技术研究项目(吉教合字2008-136)
关键词 多点边值问题 Mawhin连续性定理 FREDHOLM算子 共振 multi-point boundary value problem Mawhin's continuation theorem Fredholm operator Resonance
  • 相关文献

参考文献4

二级参考文献21

  • 1Zeng-jiDu,Chun-yanXuet,Wei-gaoGe.On Eigenvalue Intervals for Discrete Second Order Boundary Value Problems[J].Acta Mathematicae Applicatae Sinica,2005,21(1):105-114. 被引量:5
  • 2Feng W., Webb J. R. L., Solvability of m-point boundary value problems with nonlinear growth, J. Math.Anal. Appl., 1997, 212: 467-480.
  • 3Feng W., Webb J. R. L., Solvability of three-point boundary value problems at resonance, Nonlinear Anal.Theory, Meth. Appl., 1997, 30: 3227-3238.
  • 4Mawhin J., Topologicio degree and boundary value problems for nonlinear differential equations, in: P. M.Fitzperteick, M. Martelli, J. Mawhin, R. Nussbaum (Eds.), Topological Methods for Ordinary Differential Equations, Lecture Notes in Mathematics, Vol. 1537, New York, Berlin: Springer-Verlag, 1991.
  • 5Liu B., Yu J. S., Solvability of multi-point boundary value problem at resonance (Ⅰ), Indian J. Pure and Appl.Math., 2002, 33: 475-494.
  • 6Liu B., Solvability of multi-point boundary value problem at resonance (Ⅱ), Appl. Math. Comput., 2003,136: 353-377.
  • 7Liu B., Yu J. S., Solvability of multi-point boundary value problem at resonance (Ⅲ), Appl. Math. Comput.,2002, 129: 119-143.
  • 8Mawhin J., Topological degree in nonlinear boundary value problem, in: NSFCBMS Regional Conference Series in Mathematics, American Mathmeatical Society, Providence, RI, 1979.
  • 9Xue C. Y., Ge W. G., Solvability of m-point boundary value problem at resonance, Submitted.
  • 10Agarwal, R.P., O'Regan, D., Wong, P.J.Y. Positive solutions of differential, difference and integral equations. Kluwer Academic Publishers, Boston, 1999.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部