期刊文献+

广义黎曼猜想下的一类实二次域(英文)

A Class of Real Quadratic Fields via the Generalized Riemann Hypothesis
原文传递
导出
摘要 本文在广义黎曼猜想成立的前提下,给出了一类类数大于1的实二次域K=Q(d^(1/2)). In this paper we give a class of real quadratic fields with class number greater than one under the assumption of the Riemann hypothesis forζ_K,the zeta function of K,i.e., the generalized Riemann hypothesis(GRH).
作者 刘丽 陆洪文
出处 《数学进展》 CSCD 北大核心 2011年第1期29-31,共3页 Advances in Mathematics(China)
基金 Supported by NSFC(No.10801105 No.30871444) the Key Project of Natural Science of Anhui Provincial Department of Education(No.KJ2009A44) the Doctoral Special Fund of Hefei University of Technology(No.GDBJ2010-012)
关键词 二次数域 类数 判别式 ZETA函数 quadratic field class number discriminant Zeta function
  • 相关文献

参考文献1

二级参考文献14

  • 1Mollin R A, Williams H C. On a determination of real quadratic fields of class number one and related continued fraction period length less than 25[J]. Proc Japan Acad Ser A Math Sci, 1991, 67: 20-25.
  • 2Mollin R A, Williams H C. Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception) [C]// Number Theory. Berlin: Walter de Gruyter, 1990: 417-425.
  • 3Kim H K, Leu M G, Ono T. On two conjectures on real quadratic fields[J]. Proc Japan Acad, 1987, 63: 222-224.
  • 4Lu H W. Gauss's Conjectures on the Quadratic Number Fields[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1994.
  • 5Biro A. Chowla's conjecture[J]. Acta Arithmetica, 2003,107: 179-194.
  • 6Biro A. Yokoi's conjecture [J]. Acta Arithmetica, 2003,106: 85-104.
  • 7Stark H M. On the complex quadratic fields with class number equal to one[J]. Trans Amer Math Soc, 1966, 122:112-119.
  • 8Hecke E. Mathematische Werke [M]. Gaottingen:Vandenhoeck Ruprecht, 1970 : 198-207.
  • 9Mollin R A. Class number one criteria for real quadratic fields (Ⅱ)[J]. Proc Japan Acad Ser, 1987, 63: 162-164.
  • 10Mollin R A. Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a conjecture of S Chowla [J]. Proc Amer Math Soc, 1988, 102: 17-21.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部