摘要
通过将可约的Dirac以及Jacobi-Dirac结构分别分为两种类型,给出对应于Poisson流形和Jacobi流形的约化定理.这些约化定理的证明只需要进行一些直接的计算,而不需要借助于矩映射或者相容函数等复杂概念的引入.另外,给出了一些相应的例子和应用.
We give two kinds of reduction relating Poisson manifolds and Jacobi manifolds by classifying reducible Dirac and Jacobi-Dirac structures into two classes,respectively.The proof needs only some direct calculation,without using the existence of momentum mappings or the introducing of admissible functions,etc..Meanwhile we present some examples and applications.
出处
《数学进展》
CSCD
北大核心
2011年第1期103-118,共16页
Advances in Mathematics(China)
基金
Supported by Scientific Creative Platform Foundation of Beijing Municipal Commission of Education(No.PXM2008_014224_067420)
Foundation of Beijing Information Science and Technology University