摘要
提出了一种求解非线性微分-代数方程组的算法,克服了分割法的交接误差问题,并具有满意的计算精度。利用该方法,分析了不同失稳模式下励磁系统调节器时间常数对电压稳定的影响。通过分析发现:参数取值越大,系统单调失稳时的速度越快,振荡失稳时的振幅越大。利用双参数延拓法,求取了分叉边界曲线。结果表明:随着励磁系统调节器放大倍数或者参考电压的增大,重负荷区域的分叉边界值不断增大,而轻负荷区域的分叉边界值不断减小。分叉边界值与调节器放大倍数成半抛物线关系,与参考电压呈线性关系。
An algorithm to solve the nonlinear differential-algebraic equations is presented. The algorithm can overcome the transfer errors and has satisfactory accuracy. The method is used to analyze the effect of the excitation system regulator time constant on voltage stability under different instability modes. The results show that the lager the parameter is, the greater the speed in first swing instability, and the greater the amplitude of oscillation instability. The two-parameter continuation method is used to obtain the system bifurcation boundary. The results also show that when the excitation system regulator magnification or reference voltage increases, the bifurcation boundary value of the heavy-load region increases, but the bifurcation boundary value in the light-load region decreases. Bifurcation boundary value has a semi-parabolic relationship with regulator magnification, but has an approximate linear relationship with the reference voltage.
出处
《中国电力》
CSCD
北大核心
2011年第3期6-10,共5页
Electric Power
关键词
励磁系统调节器
电压稳定
分叉
延拓法
excitation system regulator
voltage stability
bifurcation
continuation method