期刊文献+

励磁系统调节器对电压稳定影响的分叉分析 被引量:2

Bifurcation analysis of the effect of excitation system regulator on voltage stability
下载PDF
导出
摘要 提出了一种求解非线性微分-代数方程组的算法,克服了分割法的交接误差问题,并具有满意的计算精度。利用该方法,分析了不同失稳模式下励磁系统调节器时间常数对电压稳定的影响。通过分析发现:参数取值越大,系统单调失稳时的速度越快,振荡失稳时的振幅越大。利用双参数延拓法,求取了分叉边界曲线。结果表明:随着励磁系统调节器放大倍数或者参考电压的增大,重负荷区域的分叉边界值不断增大,而轻负荷区域的分叉边界值不断减小。分叉边界值与调节器放大倍数成半抛物线关系,与参考电压呈线性关系。 An algorithm to solve the nonlinear differential-algebraic equations is presented. The algorithm can overcome the transfer errors and has satisfactory accuracy. The method is used to analyze the effect of the excitation system regulator time constant on voltage stability under different instability modes. The results show that the lager the parameter is, the greater the speed in first swing instability, and the greater the amplitude of oscillation instability. The two-parameter continuation method is used to obtain the system bifurcation boundary. The results also show that when the excitation system regulator magnification or reference voltage increases, the bifurcation boundary value of the heavy-load region increases, but the bifurcation boundary value in the light-load region decreases. Bifurcation boundary value has a semi-parabolic relationship with regulator magnification, but has an approximate linear relationship with the reference voltage.
出处 《中国电力》 CSCD 北大核心 2011年第3期6-10,共5页 Electric Power
关键词 励磁系统调节器 电压稳定 分叉 延拓法 excitation system regulator voltage stability bifurcation continuation method
  • 相关文献

参考文献10

  • 1陆启韶.分叉与奇异性[M].上海:上海科教出版社,1995..
  • 2LERM A A P,CANIZARES C A. Multiparameter bifurcation analysis of the South Brazilian Power System [J ]. IEEE Trans on Power Systems, 2003, 18 (2) :737-746.
  • 3SEYDEL R. From equilibrium to chaos, practical bifurcation and stability analysis [ M ]. Elsevier Science Publishing, Co.Inc,1988.
  • 4KWATNY H G, FISCHL R F. Local bifurcation in power systems: theory, computation, and application [ J ]. Proceedings of the IEEE, 1995, 83 ( 11 ) : 1456-1482.
  • 5SAUER P W,PAI M A. Power system steady-state stability and the load-flow Jacobeans [ J ]. IEEE Trans on Power Systems, 1990, 5 (4) : 1374-1383.
  • 6THIERRY V C, COSTAS V. Voltage stability of power systems [ M ].北京:中国电力出版社.2008.
  • 7彭志炜,胡国根,韩祯祥.基于分叉理论的电力系统电压稳定研究[M].北京:中国电力出版社,2005.
  • 8XU W, MANSOUR Y. Voltage stability analysis using genetic dynamic load models [ J ]. IEEE Trans on Power Systems, 1994, 9 ( 1 ) : 479-493.
  • 9CAO Guo-yun, HILL D J, HUI R. Continuation of local bifurcations for power system differential-algebraic equation stability model [J ]. lEE Proc Gener. Transm. Distrib, 2005, 152(4): 575-580.
  • 10曹国云,赵亮,刘丽霞,陈陈.动态电压稳定模型中二维参数分岔边界的计算[J].电力系统自动化,2005,29(7):24-27. 被引量:9

二级参考文献7

  • 1VENKATASUBRAMANIAN V, SCHATTIER H,ZABORSKY J. Dynamics of Large Constrained Nonlinear Systems--A Taxonomy Theory. Proceedings of the IEEE,1995, 83(11): 1530-1561.
  • 2KWATNY H G, FISCHL R F, NWANKPA C O. Local Bifurcation in Power Systems: Theory, Computation, and Application. Proceedings of the IEEE, 1995, 83(11): 1456-1483.
  • 3DOEDEL E J, CHAMPNEYS A R, FAIRGRIEVE T R et al.AUTO 2000: Continuation and Bifurcation Software for Ordinary Differential Equations. Montreal (Canada) .. Concordia University. ftp://ftp.cs.concordia. ca/pub/doedel/auto, 1997.
  • 4VENKATASUBRAMANIAN V, SCHATTLER H,ZABORSZKY J. Voltage Dynamics: Study of a Generator with Voltage Control, Transmission, and Matched MW Load. IEEE Trans on Automatic Control, 1992, 37(11): 1717-1733.
  • 5曹国云,陈陈.间接法计算非线性电压稳定模型的平衡点分岔值[J].电力系统自动化,1999,23(21):17-20. 被引量:15
  • 6余贻鑫,贾宏杰,王成山.电力系统中的混沌现象与小扰动稳定域[J].中国科学(E辑),2001,31(5):431-441. 被引量:14
  • 7刘永强,严正,倪以信,吴复立.基于辅助变量的潮流方程二次转折分岔点的直接算法[J].中国电机工程学报,2003,23(5):9-13. 被引量:51

共引文献11

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部