期刊文献+

一种多粒度Web使用数据收集方法 被引量:1

A Collection Method for Multi-granularity Web Usage Data
原文传递
导出
摘要 提出一种多粒度的用户行为数据收集方法,该方法以可配置的插件形式嵌入服务器端收集数据。实验证明,该方法能提高W eb使用挖掘的数据质量,简化W eb使用挖掘预处理工作,并为后续挖掘工作提供多种粒度的信息,从而为分析W eb用户的行为提供优质数据源。 This paper proposes a new multi -granularity collection method for user behavior data which collects data through configurable server plug - in. The experiment results prove that the method can enhance quantity of Web usage mining data, simplify data cleaning and give multi - granularity information for the following mining, and provide high quality data for Web user behavior analysis.
出处 《现代图书情报技术》 CSSCI 北大核心 2011年第2期42-47,共6页 New Technology of Library and Information Service
基金 教育部人文社会科学研究青年基金项目"基于粒计算的行为信任研究"(项目编号:10YJCZH234) 广东高校优秀青年创新人才培养计划(育苗工程)项目"基于粒计算的Web使用挖掘算法研究"(项目编号:100070) 广东工业大学博士启动基金"基于粒计算的行为信任研究"(项目编号:103055)的研究成果之一
关键词 WEB使用挖掘 数据收集 多粒度 Web usage mining Data collection Multi -granularity
  • 相关文献

参考文献16

  • 1Srivastava J,Cooley R, Deshpande M, et al. Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data [ J]. SIGKDD Explorations, 2000,1 (2) : 12 - 23.
  • 2Barth M, Skubacz M, Stolz C. Web Performance Indicator by hnplicit User Feedback - Application and Fornml Approach [ C ]. In: Proceedings of the 6th lnternatiomal Conferetwe on Web Information Systems Engineering, Web Information Systems Engineering WISE 2005. Berlin : Springer, 2005:659 - 700.
  • 3Cooley R, Mobasher B, Srivastava J. Data Preparation for Mining World Wide Web Browsing Patterns [ J]. Journal of Knowledge and Information Systems, 1999,1 ( 1 ) :5 - 32.
  • 4刘立军,周军,梅红岩.Web使用挖掘的数据预处理[J].计算机科学,2007,34(5):200-201. 被引量:22
  • 5邢东山,沈钧毅.Web使用挖掘的数据采集[J].计算机工程,2002,28(1):39-41. 被引量:11
  • 6Araya S, Silva M, Weber R. A Methodology for Web Usage Mining and Its Application to Target Group Identifcation [ J ]. Fuzzy Sets arut Systems, 2004,148( 1 ) :139 - 152.
  • 7Tao Y H, Hong T P, Su Y M. Web Usage Mining with Intentional Browsing Data [ J ]. Expert Systems with Applications: An International Journal, 2008,34 ( 3 ) : 1893 - 1904.
  • 8Tao Y H, Hong T P, Lin W H. A Practical Extension of Web Usage Mining with Intentional Browsing Data Toward Usage[ J]. Expert Systems with Applications : An International Journal, 2009,36 (2) :3937 - 3945.
  • 9Kim H K, Lee R Y. Frameworks for Web Usage Mining[A]. // Studies in Computational Intelligence [ M]. Berlin, Heidelberg: Springer,2009 : 121 - 134.
  • 10郭岩,白硕,于满泉.Web使用信息挖掘综述[J].计算机科学,2005,32(1):1-7. 被引量:50

二级参考文献110

  • 1刘鹏,刘欣,陈钟.信任管理研究综述[J].计算机工程与应用,2004,40(32):39-43. 被引量:17
  • 2林闯,彭雪海.可信网络研究[J].计算机学报,2005,28(5):751-758. 被引量:253
  • 3刘玉龙,曹元大.分布网络环境主观信任模型研究[J].北京理工大学学报,2005,25(6):504-508. 被引量:19
  • 4刘立军,周军,梅红岩.Web使用挖掘的数据预处理[J].计算机科学,2007,34(5):200-201. 被引量:22
  • 5冀铁果,田立勤,胡志兴,孙锦霞.可信网络中一种基于AHP的用户行为评估方法[J].计算机工程与应用,2007,43(19):123-126. 被引量:27
  • 6Azzedin F, Maheswaran M. Evolving and managing trust in grid computing systems [ C] //Proceedings of Canadian Conference on Electrical and Computer Engineering. Winnipeg : IEEE ,2002 : 1424-1429.
  • 7Marsh Stephen Paul. Formalising trust as a computational concept [ D]. Scotland : Department of Computing Science and Mathematics, University of Stifling, 1994.
  • 8Blaze Matt, Feigenbaum Joan, Lacy Jack. Decentralized trust management [ C]// Proceedings of the 17th Symposiren on Security and Privacy. Los Mamitos : IEEE, 1996 : 164-173.
  • 9Blaze Matt, Feigenbaum Joan, loannidis John, et al. The role of trust management in distributed systems security [ C]//Proc of Security Issues for Mobile and Distributed Objects. London : Springer-Verlag ,2001 : 185-210.
  • 10Abdul-Rahman Alfarez, Hailes Stephen. A distributed trust model [ C]//Proceedings of New Security Paradigms Workshop. Cumbria : ACM, 1998:48-60.

共引文献89

同被引文献13

  • 1Ai-BoSong,Mao-XianZhao,Zuo-PengLiang,Yi-ShengDong,Jun-ZhouLuo.Discovering User Profiles for Web Personalized Recommendation[J].Journal of Computer Science & Technology,2004,19(3):320-328. 被引量:2
  • 2吴萍,宋瀚涛,牛振东,张利萍,张聚礼.基于SS/OSF实现高维稀疏数据对象的聚类[J].北京理工大学学报,2006,26(3):216-220. 被引量:5
  • 3赵亚琴,周献中,何新,王建宇.一种有效的高属性维稀疏数据聚类算法[J].模式识别与人工智能,2006,19(3):289-294. 被引量:6
  • 4宋江春,沈钧毅.一种新的Web用户群体和URL聚类算法的研究[J].控制与决策,2007,22(3):284-288. 被引量:11
  • 5Nikulin V, McLachlan G J. Merging Algorithm to Reduce Dimensionality in Application to Web-Mining[C]. In: Proceedings of the 20th Australian Joint Conference on Advances in Artificial Intelligence(AI'07). Berlin, Heidelberg: Springer, 2007: 755-761.
  • 6Hosseini M, Abolhassani H. Hierarchical Co-clustering for Web Queries and Selected URLs[C]. In: Proceedings of the 8th International Conference on Web Information Systems Engineering(WISE'07). Berlin, Heidelberg: Springer, 2007: 653-662.
  • 7Bedi P, Chawla S. Use of Fuzzy Rough Set Attribute Reduction in High Scent Web Page Recommendations[C]. In: Proceedings of the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing(RSFDGrC'09). Berlin, Heidelberg: Springer, 2009: 192-200.
  • 8Zadeh L A. Some Reflections on Soft Computing, Granular Computing and Their Roles in the Conception, Design and Utilization of Information/Intelligent Systems[J]. Soft Computing, 1998, 2(1): 23-25.
  • 9Xie Y, Raghavan V V, Dhatric P, et al. A New Fuzzy Clustering Algorithm for Optimally Finding Granular Prototypes[J]. International Journal of Approximate Reasoning, 2005, 40(1-2): 109-124.
  • 10赵洁,肖南峰.一种基于知识颗粒的高效完备属性约简算法[J].中南大学学报(自然科学版),2009,40(6):1623-1629. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部