期刊文献+

基于查询意图聚类的实时搜索建议 被引量:4

Real-Time Search Suggestions Based on the Clustering of the User's Query Intent
原文传递
导出
摘要 对于搜索引擎返回的结果太多且较少考虑用户个性差异等缺陷,提出根据用户查询意图,实时给予多个主题的搜索建议,帮助用户更准确地描述所需信息,修正查询词与真实意图之间的差距,提高检索效率。同时运用K-means算法,对资源类别的意图特征值相似用户进行聚类,缩小查找目标对象最近邻居的范围,提高搜索建议的实时响应速度。实验结果表明,该方法是可行的。 Aimed at the defects that the search engine offers too many results and is lack of considering the differences between the user' s personalities, this paper offers a way to give users real - time search suggestions of multi theme according to the user' s search intent in order to help the users describe the information in need more accurately, as well as narrow the gap between the query word and the user' s real intentions to increase the search efficiency. At the same time, it uses K - means to cluster users who are similar in their intent eigenvalue of resources categories, narrow the range of the nearest neighbor of the searching target, as well as to speed up the real - time response of the search suggestions. The experiment result shows that this method is practical.
作者 周之诚
出处 《现代图书情报技术》 CSSCI 北大核心 2011年第2期87-93,共7页 New Technology of Library and Information Service
基金 上海应用技术学院社会科学基金项目"数字资源检索中的LibSuggest模式及其应用研究"(项目编号:SJ2010-04)的研究成果之一
关键词 聚类 搜索建议 查询意图 搜索引擎 Clustering Search suggestions Query intent Search engine
  • 相关文献

参考文献17

二级参考文献27

共引文献78

同被引文献34

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部