期刊文献+

带有增益介质包层的两个平行圆柱形纳米金属棒构成的表面等离子体光波导的数值模拟 被引量:9

Numerical Simulation of a Surface Plasmonic Waveguide with Double Parallel Columniform Metallic Nanorods Coated with Gain Medium
原文传递
导出
摘要 设计了一种带有增益介质包层的两个平行圆柱形纳米金属棒构成的表面等离子体光波导,基于频域有限差分法,对这种波导所支持的基模的能流密度分布、有效折射率、传播长度和模式面积随几何结构参数和电磁参数的依赖关系进行了分析。结果表明,沿纵向的能流主要分布在两个圆柱形金属棒所形成的中间区域。通过调节这种波导的几何参数及电磁参数,可以调节模式的传播特性。在增益介质的辅助下,传播距离明显增大。这种表面等离子体光波导可以用于光子器件集成领域和传感器领域。 A kind of surface plasmonic waveguide with double parallel columniform metallic nanorods coated with the gain medium is introduced.The dependence of distribution of longitudinal energy flux density,effective index,propagation length and mode area of the fundamental mode with longer propagation length supported by this waveguide on geometrical parameters and electromagnetic parameters are analyzed using the finite-difference frequency-domain(FDFD) method.Results show that the longitudinal energy flux density distributes mainly in the middle area which is formed by the two columniform metallic rods.The propagation properties can be adjusted by changing the geometrical parameters and electromagnetic parameters.The propagation length can be extended obviously with the help of the gain medium.This kind of surface plasmonic waveguide can be applied in the field of photonic device integration and sensors.
出处 《中国激光》 EI CAS CSCD 北大核心 2011年第3期185-190,共6页 Chinese Journal of Lasers
基金 山西省自然科学基金(2010011003-1)资助课题
关键词 表面等离子体光波导 传输特性 频域有限差分法 增益介质包层 surface plasmonic waveguides propagation properties finite-difference frequency-domain method gain medium coating
  • 相关文献

参考文献2

二级参考文献57

  • 1武延荣,郭丽霞,薛文瑞,周国生.单偏振光子晶体光纤[J].光学学报,2007,27(4):593-597. 被引量:14
  • 2郭丽霞,武延荣,薛文瑞,周国生.复合六边形空气孔格点光子晶体光纤的色散特性分析[J].光学学报,2007,27(5):935-939. 被引量:19
  • 3Miziumski C 1972 Phys. Lett. 40A 187.
  • 4Pfeiffer C A, Economou E N and Ngai K L 1974 Phys. Rev. B 10 3038.
  • 5Prade B and Vinet J Y 1994 J. Lightwave. Tech. 12 6.
  • 6Novotny L and Hafner C 1994 Phys. Rev. E 50 4094.
  • 7Schroter U and Dereux A 2001 Phys. Rev. B 64 125420.
  • 8Baida F I, Belkhir A, VanLabeke D and Lamrous O 2006 Phys. Rev. B 74 205419.
  • 9Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill).
  • 10Jackson J D 1999 Classical Electrodynamics, 3rd edn. (New York: Wiley).

共引文献17

同被引文献98

  • 1张羊羊,朱方明,沈林放,高振.介质填充浅槽周期结构表面上的太赫兹表面等离子体激元[J].光子学报,2012,41(4):389-393. 被引量:10
  • 2董启明,郭小伟.表面等离子体无掩膜干涉光刻系统的数值分析(英文)[J].光子学报,2012,41(5):558-564. 被引量:5
  • 3X. Y. Zhang, A. Hu, J. Z. Wen et al.. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides [ J ]. Opt. Express, 2010, 18(18) : 18945-18959.
  • 4X.Y. Zhang, A. Hu, T. Zhang et al.. Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties[J]. Appl. Phys. Lett., 2010, 96(4): 043109.
  • 5J. N. Anker, W. P. Hall, O. Lyanderset al.. Biosensing with plasmonic nanosensors [ J ]. Nature Mater. , 2008, 7 ( 6 ) 442-453.
  • 6Xin Hong, Dandan Du. SERS activity of Au nanoparticle films [J]. Chin. Opt. Lett. , 2009, 7(4):355-356.
  • 7E.M. Larsson, C. Langhammer, I. Zoric et al.. Nanoplasmonic probes of catalytic reactions[J]. Science, 2009, 326(5956) : 1091-1094.
  • 8E. Prodan, C. Radloff, N. J. Halas et al.. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 2003, 302(5644) : 419-422.
  • 9E. Prodan, P. Nordlander. Plasmon hybridization in spherical nanoparticles[J]. J. Chem. Phys., 2004, 120(11): 5444-5454.
  • 10B.Q. Li, C. H. Liu. Long wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells[J]. Opt. Lett., 2011, 36(2): 247-249.

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部