期刊文献+

沪语语音识别研究及在家居机器人中的应用

Hu language speech recognition study and application in controlling housekeeping service robot
下载PDF
导出
摘要 为实现对沪语语音的识别和与家居机器人沪语语音交互,通过分析了沪语语言的语音、语调、语法特点,提出了沪语语音的识别基元的建模方法。该方法生成了新的声韵集作为识别基元,并建立了课题相关的沪语语音语料库,同时基于HTK初步构造了沪语语音的声学模型和3-Gramm语言模型。该系统模型在家居服务机器人中得到初步的应用,系统采用VC6.0实现,实现了用现场语音对家居服务机器人动作的控制,稳定环境下实验成功率达到87.33%。语音交互实验结果表明了该系统的有效性。 To achieve Hu language speech recognition and interact with housekeeping robot using Hu language,the characteristics of phonetics,tone and grammar of Hu language are analyzed,the new method to model the basic phone units of Hu language is advanced,the new initial/final sets is generated as the basic phone sets by the method.And the corpus of Hu language speech which is related to our project is constructed.Based on HTK,the acoustic model is built and the 3-Gramm language model is initally constructed for Hu language.Hu language speech recognition system model is used in the housekeeping service robot.The system is realized with VC6.0,and con-trolling the action of a housekeeping service robot is realized by present speech.In the stabilizing environment the experiment accuracy can reach 87.33%.The feasibility of the proposed system are demonstrated by the voice interaction experiment.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第3期1033-1035,1073,共4页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2007AA041604)
关键词 沪语语言特点 沪语语料库 沪语语音识别 家居服务机器人 HMM工具包 characteristics of Hu language corpus of Hu language speech Hu language speech recognition Housekeeping service robot HMM toolkit
  • 相关文献

参考文献7

  • 1于玉.上海普通话与标准普通话元音系统的声学对比研究[D].杭州:浙汀大学,2004.
  • 2Ma Guangguang,Zhou Wenli,Zheng Jing,et al.A comparison between HTK and SPHINX on Chinese mandarin[C].Califomia: International Joint Conference on Artificial Intelligence, 2009: 394-397.
  • 3Yi Liu, Pacale Fung. Pronunciation modeling for spontaneous mandarin speech recognition [J].International Journal of Speech Technology,2004(7): 155-172.
  • 4杨凤芹,孙吉贵,张长胜,张长海.大词汇量连续语音识别中搜索空间的表示及相关搜索方法的研究进展[J].计算机科学,2008,35(2):191-195. 被引量:2
  • 5Muller C,Burkhardt F.Combining short-term cepstral and long- term prosodic features for automatic recognition of speaker age [C].Antwerp:Proceedings of Interspeech,2007:2277-2280.
  • 6Guanglai Gao A, Biligetu, Nabuqing, Zhang Shuwu.Mongolian speech recognition system based on HMM[C].Heidelberg:lCIC, LNAI 4114,2006:667-676.
  • 7Young S, Jansen J, Odell J. The HTK book [EB/OL] .http://htk. eng.cam.ac.uk/,2009-11-20.

二级参考文献28

  • 1Ney H, Haeb-Umbach R, Tran B H, et al. Improvements in Beam Search for 10,000-word Continuous Speech Recognition [A]. In;Proceedings of IEEE International Conference on Acoustic, Speech and Signal Process-ing [C], San Francisco, CA, 1992. 13-16.
  • 2Li Z, Boulianne G, Labute P, et al. Bi-directional Graph Search Strategies for Speech Recognition [J]. Computer Speech and Language, 1996, 10(4):295-321.
  • 3Hanazawa K,Minami Y,Furui S. An efficient search method for large-vocabulary continuous-speech recognition [A]. In:Proceedings ICASSP [C], Munich, ALLEMAGNE, 1997, 3 : 1787-1790.
  • 4Federico M,Cettolo M,Brugnara F,et al. Language modeling for efficient beam-search [J]. Computer Speech and Language, 1995, 9 (4) : 353-379.
  • 5Riley M,Pereira F,Mohri M. Transducer composition for contextdependent network expansion [A]. In: Proceedings EUROSPEECH [C],Rhodes,Greece, 1997,3:1427-1430.
  • 6Beyerlein P, Ullrich M, Wilcox P. Modeling and decoding of crossword context dependent phones in the Philips large vocabulary continuous speech recognition system [A]. In: Proceedings EUROSPEECH [C], Rhodes, Greece, 1997,3:1163-1166.
  • 7Ney H, Ortmanns S. Dynamic programming search for continuous speech recognition. IEEE Signal Processing Magazine, 1999, 16(5) :64-83.
  • 8Young S,Jansen J, Odell J, et al. The HTK Book, version 2. 1. Distributed with the HTK toolkit.
  • 9Georgila K, Fakotakis N, Kokkinakis G. Large Vocabulary Search Space Reduction Employing Directed Acyclic Word Graphs and Phonological Rules [J]. International Journal of Speech Technology, 2002,5(4) : 355-370.
  • 10Antoniol G, Carli G, Cettolo M, et al. Tools for development, test and analysis of ASRS [A]. In: Proceedings ICSPAT [C], Cambridge, MA, 1992. 1005-1010.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部