期刊文献+

基于DNA遗传算法的CR多载波参数优化

Parameter optimization of multicarrier in CR based on DNA GA
下载PDF
导出
摘要 提出了一种基于DNA计算的非支配排序多目标遗传算法(DNA-GA)来对CR多载波传输参数进行优化。该算法通过非支配排序计算个体适应度,结合克隆操作使算法收敛于全局最优,并引入DNA基因级操作,以提高算法的搜索性能,保持种群的多样性。通过在不同服务需求情况下得到的仿真参数结果,证明了DNA-GA可以有效地优化CR传输参数。 This paper presents a DNA multi-objective genetic algorithm (DNA-GA) based on non-dominated sorting to optimize the CR multi-carrier parameters. Non-dominated sorting and clone operator are used to converge to the global Pareto-optimal front. In addition, the DNA genetic manipulation is introduced to improve the search capability and get good population diversity. The simulation results in different service requirements show that DNA-GA can effectively optimize CR transmission parameters.
出处 《微型机与应用》 2011年第5期68-71,共4页 Microcomputer & Its Applications
基金 国家863项目(2007AA01Z151)
关键词 认知无线电 DNA编码 多目标遗传算法 参数优化 CR DNA encoding multi-objective genetic algorithm parameters optimization
  • 相关文献

参考文献8

  • 1RONDEAU T W. Application of artificial intelligence to wireless communications [D]. Department of Electrical and Computer Engineering in VT, 2007.
  • 2赵知劲,郑仕链,尚俊娜,孔宪正.基于量子遗传算法的认知无线电决策引擎研究[J].物理学报,2007,56(11):6760-6766. 被引量:34
  • 3DEB K, AGRAWAL S, PRATAB A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II [C]. Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, France, 2000: 849-858.
  • 4Gong Maoguo, Jiao Lieheng, Du Haifeng. Multiobjective immune algorithm with non-dominated neighbor based selection [J]. MIT Press Journals, 2008(7): 225-255.
  • 5DEB K, THIELE L, LAUMANNS M, et al. Scalable multi- objective optimization test problems [R] Proceedings of Congress on Evolutionary Computation, CEC 2002, 2002:825-830.
  • 6Xiao Peng, VADAKKEPAT P, LEE Tong Heng. Contextdependent DNA coding with redundancy and introns[J]. IEEE Transactions on Systems, Man and Cybernetics, 2008, 38(2).
  • 7ADRA S F. Improving convergence, diversity and pertinency in multiobjective optimisation [D]. Department of Automatic Control and Systems Engineering of University of Sheffield, 2007.
  • 8NEWMAN T R, BARKER A B, WYGLINSKI A M, et al. Cognitive engine implementation for wireless multicarrier transceivers[J]. Wiley InterScience, Wireless Communications and Mobile Computing, 2007,7(9) : 1129-1142.

二级参考文献9

  • 1周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 2Narayanan A,Moore M 1996 IEEE International Conference on Evolutionary Computation 61
  • 3Han K H,Kim J H 2000 IEEE International Conference on Evolutionary Computation 1354
  • 4Yan J A,Zhuang Z Q 2003 Journal of Electronics 20 62
  • 5Rieser C J 2004 Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and Networking (Blacksburg:Virginia Tech)
  • 6Haykin S 2005 IEEE Journal on Selected Areas in Communications 23 201
  • 7Neel J 2006 Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management Algorithms (Blacksburg:Virginia Tech)
  • 8Rondeau T W,Rieser C J,Bostian C W 2004 SDR Forum
  • 9Proakis J G 2000 Digital Communications,Fourth Edition (New York:McGraw-Hill) p254

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部