期刊文献+

T-S模糊有记忆非易碎系统H_∞控制器设计的LMI方法

LMI-based H_∞ controller designs for T-S fuzzy systems with memory non-fragile
下载PDF
导出
摘要 针对T-S模型的有记忆非易碎模糊系统,基于Lyapunov稳定性理论,利用线性矩阵不等式(LMI)方法,借助Schur补引理,讨论了该模糊系统的H∞状态反馈控制器的设计问题。在控制器增益为加法式摄动的有界条件下,得到了基于T-S模型的有记忆非易碎模糊系统,满足了H∞性能指标的一个充分条件,仿真结果表明了设计方法的有效性。 Based on Lyapunov stability, by means of linear matrix inequality (LMI), and using Schur complement lemma, state feedback H∞ controller design is considered for memory non-fragile systems based on T-S fuzzy model. A sufficient condition which satisfied H∞ performance is presented with gain variation. The simulation results prove the reliability of this method.
作者 杭阿芳
机构地区 金陵科技学院
出处 《微型机与应用》 2011年第5期77-80,共4页 Microcomputer & Its Applications
关键词 增益摄动 有记忆 非易碎控制 H∞控制 gain variation memory non-fragile control H∞ control
  • 相关文献

参考文献9

  • 1ZAMES G. Feedback and optimal sensitivity: model reference transfer functions, multiplicative semi-norms, and approximate inverses[J]. IEEE Trans Automt Control, 1981(2): 301-320.
  • 2KHARGONEKAR P P, PETERSEN I R, ZHOU K. Robust stabilization of uncertain linear systems : quadratic stabilizability and H∞ control theory [J]. IEEE Transactions on Automatic Control, 1990(3) : 356-361.
  • 3SCHAFI V A J. L2-gain analysis of nonlinear systems and nonlinear state-feedback H∞control [J]. IEEE Transactions on Automatic Control, 1992(6): 770-784.
  • 4岳菊梅,李俊民,闫永义.不确定T-S模糊系统鲁棒非脆弱H_∞控制[J].系统工程与电子技术,2008,30(5):909-913. 被引量:1
  • 5Liu Xinrui, Zhang Huaguang, Liu Guowei. Robust and non-fragile H∞ control for affine fuzzy large-scale systems [J]. Intelligent Control and Automation, 2008 (27): 6107-6112.
  • 6Yang Jun, Zhong Shouming, Xiong Lianglin. A descriptor system approach to non-fragile H∞ control for uncertain fuzzy neutral systems [J]. Fuzzy Sets and Systems, 2009(4): 423-438.
  • 7姜偕富,费树岷,冯纯伯.线性时滞系统的记忆与无记忆复合H^∞状态反馈控制[J].系统工程理论与实践,2002,22(6):21-25. 被引量:3
  • 8王岩青,赵金华,姜长生.一类非线性不确定时滞系统的记忆与无记忆复合H_∞状态反馈控制[J].电光与控制,2006,13(2):35-37. 被引量:1
  • 9Xu Shengyuan, LAM J, Wang Jianliang, et al. Non-fragile positive real control for uncertain linear neutral delay systems[J]. Systems&Control Lett, 2004(52) :59-74.

二级参考文献23

  • 1林瑞全,杨富文.基于H_∞控制理论的非脆弱控制的研究[J].控制与决策,2004,19(5):598-600. 被引量:34
  • 2田连江,高为炳,程勉.线性时滞不确定系统的鲁棒性研究[J].控制理论与应用,1993,10(6):718-723. 被引量:23
  • 3Tanaka K. Ikeda T,Kim E,et al. Fuzzy regulators and fuzzy ob verses: relaxed stability conditions and LMI-based designs[J]. IEEE Trans. on Fuzzy Systems ,1998,6(2) :250 - 265.
  • 4Takagi T, Sugeno M. Fuzzy identification of systems and its ap plication to modeling and control[J]. IEEE Trans. on Sys. Man Cybern,1985,15(1):116 132.
  • 5Tanaka K,Ikeda T, Wang H O. Robust stability of a class of uncertain nonlinear system via fuzzy control: quadratic stability, Hx control theory and linear matrix inequalities [ J]. IEE Trans. on Fuzzy Systems,1996,4(1):1-13.
  • 6Tong S C, Li H H. Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties[J]. Fuzzy Sets and Systems,2002,131(2) :165 - 184.
  • 7Yang Guang hong,Wang Jian liang. Non-fragile H control for linear systems with multiplicative controller gain variations[J]. Automatica, 2001, 37(5) :727 - 737.
  • 8Park Ju H, Jang Ho Y. On the design of non fragile guaranteed lost controller for a class of uncertain dynamic systems with state delays[J]. Applied Mathematics and computations, 2004, 150 (1):245 -257.
  • 9Xu Shengyuan, Lain James, Wang Jianliang. Non fragile posi tive real control for uncertain linear neutral delaysystems[J].Systems & Control Letters, 2004, 52(1): 59-74.
  • 10Tanaka Kazuo,Wang Hua O. Fuzzy control systems design and analysis: a linear matrix inequality approach[M]. Wiley, Inc. ,9001.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部