期刊文献+

基于回溯的迭代硬阈值算法 被引量:22

Iterative Hard Thresholding Algorithm Based on Backtracking
下载PDF
导出
摘要 针对压缩传感(Compressed sensing,CS)理论中迭代硬阈值(Iterative hard thresholding,IHT)算法迭代次数多和时间长的问题,提出基于回溯的迭代硬阈值算法(Backtracking-based iterative hard thresholding,BIHT),该算法通过加入回溯的思想,优化了IHT算法迭代支撑的选择,减少支撑被反复选择的次数.模拟实验表明,在保证重建质量的前提下,相比较于IHT和正规化迭代硬阈值(Normalized IHT,NIHT)算法,BIHT算法的重建时间降低了2个数量级.用本身稀疏的0-1随机信号的重建实验表明,若测量次数和稀疏度相同,BIHT算法的重建概率高于IHT算法. The backtracking-based iterative hard thresholding (BIHT) algorithm is proposed to solve the problem that the number of iterations is too large and the iteration time is too long when the iterative hard thresholding (IHT) algorithm is applied to the compressive sensing.The BIHT algorithm optimizes the sub-optimal choice of supports for each iteration and reduces the times of some supports iterated repeatedly by adding the idea of backtracking.The simulation demonstrates that backtracking-based algorithm ensures the reconstruction quality and decreases the time by two orders of magnitude when compared with IHT and Normalized iterative hard thresholding (NHT) algorithms for low noise level.Simulation on the 0-1 sparse signal demonstrates that the reconstruction probability of BIHT algorithm is higher than that of the IHT algorithm if the measurement times and sparsity of the signal are the same.
出处 《自动化学报》 EI CSCD 北大核心 2011年第3期276-282,共7页 Acta Automatica Sinica
基金 高等学校博士学科点专项科研基金 (20070357003) "新一代宽带无线移动通信网" 国家科技重大专项 (2009ZX-03006-001-02)~~
关键词 压缩传感 迭代硬阈值 正规化迭代硬阈值 回溯 稀疏 Compressive sensing iterative hard thresholding (IHT) normalized iterative hard thresholding (NIHT) backtracking sparsity
  • 相关文献

参考文献1

二级参考文献61

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.

共引文献204

同被引文献293

  • 1张军.求解不适定问题的快速Landweber迭代法[J].数学杂志,2005,25(3):333-335. 被引量:6
  • 2时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 3方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 4D. Takhar, J. N. Laska, M. B. Wakin et al.. A new compressive imaging camera architecture using optical domain compression [C]. SPIE, 2006, 6065:606509.
  • 5M. F. Duarte, M. A. Davenport, D. Takharetal.. Single-pixel imaging via compressive sampling [J].IEEE Signal Processing Magazine, 2008, 25(2) : 83-91.
  • 6P. T. Boufounos, R. G. Baraniuk. 1 bit compressive sensing [C]. Conf. Information Sciences and Systems (CISS), 2008, 16--21.
  • 7A. Stern, B. Javidi. Random projections imaging with extended space-bandwidth product [J]. J. Display Technology, 2007, 3(3): 315-320.
  • 8R. F. Marcia, R. M. Willett. Compressive coded aperture superresolution image reconstruction [C]. IEEE International ConFerence on Acoustics, Speech and Signal Processing 2008 (ICASSP 2008), 2008, 833-836.
  • 9Roummel F. Marcia, Zachary T. Harmany, Rebecca M. Willett. Compressive coded aperture imaging [C]. SPIE, 2009, 7246- 72460G.
  • 10R. Baraniuk, P. Steeghs. Compressive radar imaging [C]. 2007 IEEE Radar Conference, 2007, 128--133.

引证文献22

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部