摘要
应用Karamata正规变化理论和上下解方法,考虑了具有奇异边界条件u|Ω=+∞的非线性椭圆方程Δu±|u|q=b(x)f(u)边界爆破解的边界行为,其中f在无穷远处比任何幂函数up(p>1)都要变化得快,b(x)∈Cθ(Ω)(θ>0)在Ω非负.
By Karamata regular variation theory and the method of lower and supper solution,the boundary behavior of boundary blow-up solutions of the nonlinear elliptic equationΔu±|u|q=b(x)f(u)in Ω,subject to the singular boundary condition u|Ω=+∞ is investigated,where f grows at infinite,faster than any power up(p1),b(x)∈Cα(Ω) for some α0,which is nonnogetive in Ω.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2011年第2期131-134,共4页
Journal of Zhejiang University(Science Edition)
基金
Gansu Provincial Educational Science"Eleventh Five-Year"Planning Issuse.(GSBG[2009]GXG188)