期刊文献+

含非线性梯度项的椭圆方程大解的渐近行为(英文)

Asymptotic behavior of large solution to elliptic problems with nonlinear gradient terms
下载PDF
导出
摘要 应用Karamata正规变化理论和上下解方法,考虑了具有奇异边界条件u|Ω=+∞的非线性椭圆方程Δu±|u|q=b(x)f(u)边界爆破解的边界行为,其中f在无穷远处比任何幂函数up(p>1)都要变化得快,b(x)∈Cθ(Ω)(θ>0)在Ω非负. By Karamata regular variation theory and the method of lower and supper solution,the boundary behavior of boundary blow-up solutions of the nonlinear elliptic equationΔu±|u|q=b(x)f(u)in Ω,subject to the singular boundary condition u|Ω=+∞ is investigated,where f grows at infinite,faster than any power up(p1),b(x)∈Cα(Ω) for some α0,which is nonnogetive in Ω.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期131-134,共4页 Journal of Zhejiang University(Science Edition)
基金 Gansu Provincial Educational Science"Eleventh Five-Year"Planning Issuse.(GSBG[2009]GXG188)
关键词 边界爆破 非线性梯度项 Karamata正规变化理论 Boundary blow-up Nonlinear gradient terms Karamata regular variation theory
  • 相关文献

参考文献17

  • 1CIRSTEA F. Elliptic equations with competing rapidly varying nonlinearities and boundary blowup[J]. Adv Differential Equations, 2007,12 : 995-1030.
  • 2HUANG S, TIAN Q. Asymptotic behavior of large solution for boundary blow-up roblems with nonlinear gradient terms[J]. Appl Math Comput, 2009,215 : 3091-3097.
  • 3CIRSTEA F, RADULESCU V. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion[J]. C R Acad Sci Paris: Ser I, 2002,335: 447-452.
  • 4CIRSTEA F, RADULESCU V. Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach[J]. Asymptotic Analy, 2006,46 : 275-298.
  • 5nonlinear elliptic equations of Bieberbach-Rademacher type[J]. Trans Amer Math Soc, 2007, 359:3275 - 3286.
  • 6CIRSTEA F, DU Y. General uniqueness results and variation speed for blow-up solutions of elliptic equa- tions[J]. Proc London Math Soc,2005,91:459-482.
  • 7MELIAN J. Boundary behavior for large solutions to elliptic equations with singular weights[J]. Nonlinear Anal, 2007,67 : 818-826.
  • 8ZHANG Z. Boundary blow-up elliptic problems of Bieberbach and Rademacher type with nonlinear gradi- ent terms[J]. Nonlinear Anal, 2007,67 : 727-734.
  • 9YANG H. A compact support principle for singular elliptic differential inequalities with a gradient term [J]. Nonlinear Anal,2007,67 ..2157-2166.
  • 10YANG H. Existence and nonexistence of blow-up boundary solutions for sublinear elliptic equations[J]. J Math Anal Appl,2006,314:85-96.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部