期刊文献+

混合指数分布顺序统计量的性质(英文) 被引量:3

On properties of order statistics from the mixed exponential distribution
下载PDF
导出
摘要 设{Xs,1≤s≤n}独立同分布,X1:n,X2:n,…,Xn:n为其顺序统计量.当Xs服从参数分别为p(0<p<1),λ1,λ2(0<λ1≤λ2)的混合指数分布时,得到了Xs:n的q(q为正整数)阶原点矩E(Xsq:n)(1≤s≤n)的精确表达式.证明了其顺序统计量的样本间隔不独立,且不同分布.此外还研究了其极端顺序统计量X1:n和Xn:n的渐近分布. Let {Xs,1≤s≤n} be independent and identically distributed,and X1:n,X2:n,…,Xn:n be the corresponding order statistics.When Xs follows the mixed exponential distribution with parameters p(0p1),λ1,λ2(0λ1 ≤λ2),the explicit formulas for the q order origin moments of Xs:n are obtained(q is a positive integer and 1 ≤s≤n).It is proved that the sample intervals of their order statistics are not independent and not identically distributed.What's more,the asymptotic distributions of their extreme order statistics X1:n and Xn:n are discussed.
作者 匡能晖
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期135-139,共5页 Journal of Zhejiang University(Science Edition)
基金 The Project Supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No.08C588)
关键词 混合指数分布 顺序统计量 原点矩 渐近分布 the mixed exponential distribution order statistic origin moment asymptotic distribution
  • 相关文献

参考文献16

  • 1TIAN Y Z, WANG B C, CHEN P. Parameters estimation for a mixture of generalized exponential distri-butions [J]. Jiangxi Normal University.. Natural Science,2009,33(3) :297-300.
  • 2GUPTA R D, KUNDU D. Generalized exponential distribution: Bayesian estimation[J]. Statist Data Anal, 2008,52 : 1873-1883.
  • 3IMRE C, FRANTISEK M. Generalized maximum likelihood estimates for exponential families[J]. Probability Theory and Related Fields, 2008,141 : 213 - 246.
  • 4殷利平,王乃和,吕玉华.一类索赔时间间隔服从混合指数分布的更新风险过程[J].经济数学,2008,25(2):118-125. 被引量:3
  • 5PANDEY M, UPADHYAY S K. Bayesian inference in mixtures of two exponentials[J]. Mieroeleetronics Reliability, 1988,28(2):217-221.
  • 6JAROSLAW B. Mixtures of exponential distributions and stochastic orders[J]. Statistics and Probability Let- ters,2002,57(1):23-31.
  • 7GUPTA R D, KUNDU D. Generalized exponential distribution:existing results and some recent develop- ments[J]. Statist Plan Inf, 2007,104 : 339 - 350.
  • 8GIULIANA R. A class of bivariate exponential distri-butions[J]. J Multivariate Analysis, 2009,100 (6) : 1261-1269.
  • 9KUNDU D, GUPTA R D. Bivariate generalized exponential distribution[J]. J Multivariate Analysis, 2009, 100(4) :581-593.
  • 10GUPTA A K, NADARAJAH S. Sums, products and ratios for Freund's bivariate exponential distribution[J]. Applied Mathematics and Computation,Z006, 173(2) : 1334-1349.

二级参考文献4

  • 1Rolski, T., Schmidli, H., et al. Stochastic Process for Insurance and Finance. New York: John Wiley and Sons, 1999.
  • 2David, C., Dickson, M. On a class of renewal risk processes. North American American Actuarial, 1998,2(3):60- 73.
  • 3Yuen, Kam C., Wang Guojing, et al. The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier. Insurance:Mathematics and Economice. 2007,40:104- 112.
  • 4Chen, Yiqing and Kai W. Ng. The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims. Insurance : Mathematics and Economics .2007,40:415 - 423.

共引文献2

同被引文献27

  • 1邓宇辉.样本区间的概率分布[J].数学杂志,2004,24(6):685-689. 被引量:19
  • 2王炳章.二维顺序统计量的概率分布[J].烟台大学学报(自然科学与工程版),2001,14(3):157-160. 被引量:9
  • 3Nadarajah S. Explicit expressions for moments of or- derstatisties[J]. SPL, 2008,78(2):196.
  • 4Thomas P Y, Samuel P. Recurrence relations for the moments of order statistics from a Beta distribution [J].Stat Papers, 2008, 49(1): 139.
  • 5Galambos J. The asymptotic theory of extreme or- der statistics[M]. 2nd ed. Malabar: Robert E Krieger Publishing Go,Ine, 2001.
  • 6Asgharzadeh A, Abdi M. Point and Interval Estimation for the Burr Ill Distribution [ J ]. J Stat Res Iran, 2008,46 (5) :387 - 398.
  • 7Shawky A I , Al-kashkari F H. On a stress-strength Model in Burr of Type III [J]. METRON:Int J Stat, 2007,32(4) :481 -490.
  • 8Wang F, Lee C. M-estimator with Asymmetric Influence Function for Esimating the Burr Type III Parameters with Outliers [ J ]. Comput Math Appl, 2011,62(2) : 196-205.
  • 9Nadarajah S. Explict expressions for moments of order statistics [ J ]. Stat Probabil Lett,2008,78 (2) :196 -205.
  • 10Thomas P Y, Samuel P. Recurrence relations for the moment of order statistics from a beta distribution [ J ]. Stat Pap, 2008,49 ( 1 ) : 139 - 146.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部