摘要
设{Xs,1≤s≤n}独立同分布,X1:n,X2:n,…,Xn:n为其顺序统计量.当Xs服从参数分别为p(0<p<1),λ1,λ2(0<λ1≤λ2)的混合指数分布时,得到了Xs:n的q(q为正整数)阶原点矩E(Xsq:n)(1≤s≤n)的精确表达式.证明了其顺序统计量的样本间隔不独立,且不同分布.此外还研究了其极端顺序统计量X1:n和Xn:n的渐近分布.
Let {Xs,1≤s≤n} be independent and identically distributed,and X1:n,X2:n,…,Xn:n be the corresponding order statistics.When Xs follows the mixed exponential distribution with parameters p(0p1),λ1,λ2(0λ1 ≤λ2),the explicit formulas for the q order origin moments of Xs:n are obtained(q is a positive integer and 1 ≤s≤n).It is proved that the sample intervals of their order statistics are not independent and not identically distributed.What's more,the asymptotic distributions of their extreme order statistics X1:n and Xn:n are discussed.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2011年第2期135-139,共5页
Journal of Zhejiang University(Science Edition)
基金
The Project Supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No.08C588)
关键词
混合指数分布
顺序统计量
原点矩
渐近分布
the mixed exponential distribution
order statistic
origin moment
asymptotic distribution