期刊文献+

基于并行卡尔曼滤波的递推最小二乘测频算法 被引量:2

A Least Squares Frequency Measurement Algorithm Based on the Parallel Kalman Filter
下载PDF
导出
摘要 提出了一种基于并行卡尔曼滤波的递推最小二乘算法.利用最小二乘算法对卡尔曼滤波的并行多路收敛输出值进行二次优化估计.将本算法应用于正弦波测频,与只采用卡尔曼滤波的算法相比,可使频率估计精度得到明显提高.仿真证明在信噪比0-100 dB区间内采用本算法为卡尔曼滤波算法的测频误差的1/10左右. Presents a Least Squares frequency measurement algorithm based on the parallel Kalman filter.The convergence values of the Kalman filter is in accordance to the input model of the Least squares algotithm,so Least squares algorithm can be used to optimization the output of the Kalman filter.The frequency estimation accuracy can be increased significantly by using this algorithm to only using Kalman filter.It is proved that the frequency estimation error can be reduced to about 1/10 when using the Least Squares frequency measurement algorithm based on the parallel Kalman filter instead of only using the Kalman filter.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第3期1-5,12,共6页 Microelectronics & Computer
基金 国家高技术研究发展计划("八六三"计划)(2009AA12Z314)
关键词 卡尔曼滤波 最小二乘 高斯分布 测频 Kalman filter Least squares Gaussian distribution frequency measurement
  • 相关文献

参考文献6

  • 1Jiang Wei, Zhao Xia, Chen Qijun. Kalman filtering de sign based on real-time updating of noise matrix[C]// International Joint Conference on Bioinformatics Wash- ington: IEEE, 2009: 569-572.
  • 2JosC A. Ramos, Erik I. Verriest. Total least squares fitting of two point sets in m-D[C]// Conference on Decision & Control. San Diego: IEEE, 1997: 5048 -5053.
  • 3陈旸,刘泽民.基于卡尔曼滤波的盲空时检测器[J].微电子学与计算机,2007,24(1):130-132. 被引量:1
  • 4张家超,孔媛媛,刘飞.基于最小二乘隐空间支持向量机的IDS检测算法的设计[J].微电子学与计算机,2008,25(11):171-173. 被引量:3
  • 5Munoz Hernandez G A, Diaz Sanchez A, Jones D I, et al. Estimating the frequency variation of the mexican grid by Kalman filtering [C]//IEEE International Conference on Electrical, Communications, and Computers. Washington: IEEE, 2009: 245-249.
  • 6Zhang Z G, Chan S C, Tsui K M. A recursive frequency estimator using linear prediction and a kalman-filter-based iterative algorithm [J]. IEEE Transaction on Circults and Systems, 2008, 55(6): 576-580.

二级参考文献14

  • 1毋建宏.基于多传感器Kalman滤波器的GPS/IMU数据融合算法设计[J].微电子学与计算机,2005,22(6):77-79. 被引量:10
  • 2王玲,薄列峰,刘芳,焦李成.最小二乘隐空间支持向量机[J].计算机学报,2005,28(8):1302-1307. 被引量:12
  • 3唐建锋,汪一鸣,朱洪波.基于自适应的DS-UWB多用户检测方案研究[J].微电子学与计算机,2005,22(9):127-129. 被引量:3
  • 4Vapnik V N. The nature of statistical learning theory[M]. New York:Springer Verlag, 1999,
  • 5Zhang Li, Zhou Wei - da, Jiao Li - cheng. Hidden space support vector machines[J ]. IEEE Transactions on Neural Networks,2004,15(6) :1424 - 1434.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine elassifiers[J ]. Neural Processing Letters, 1999, 9 (3) :293 - 300.
  • 7Suykens J A K, Lukas L, Dooren P Van, et al. Least squares support vector machines classifiers: a large scale algorithm[C]// Proceedings of the European Conference on Circuit Theory and Design. Italy Stresa, 1999:839 - 842.
  • 8KDD Cup99 dataset[EB/OL]. [ 1999 - 10 - 19]. http:// kdd. ics. uci. edu/databases/kddcup99/kddcup99. htm.
  • 9Verdu S.Multiuser detection.Cambridge:Cambridge University Press,1998
  • 10Paulraj A J,Papadias C B.Space-time processing for wireless communications.IEEE Trans.on Signal Processing,1997,14(6):49~83

共引文献2

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部