期刊文献+

粗糙集-遗传神经网络在挖掘机故障诊断中的应用研究 被引量:5

Application Research of Rough Set-Genetic Algorithm-Neural Network Algorithm in Excavator Fault Diagnosis
下载PDF
导出
摘要 针对当前单一的故障诊断方法不能满足实际需求的问题,提出了一种粗糙集-遗传神经网络分类器模型,实现对挖掘机故障分类.该模型首先利用粗糙集理论对神经网络的输入进行属性约简,以减少神经网络的工作量;利用遗传算法优化BP神经网络,解决神经网络易陷入局部极小和收敛速度慢的问题;最后利用约简结果和优化的BP网络进行网络训练.实验结果验证了该方法用于故障诊断的有效性. Aiming at a single fault diagnosis method can′t meet the actual need,a classification model were proposed,which based on rough set-genetic algorithm-neural network algorithm,to come true excavator fault diagnosis classification.Firstly,the attributes were reduced using rough set theory to choose neural network′s input parameters,which reduced the work and calculation time.Then,in order to solve the shortcoming in the back propagation algorithm,such as trapping to the local minimum and slowness in training speed,genetic algorithm was integrated to optimizing the BP network parameters.Finally,the model carried on the training by the reduction results and the optimized BP network parameters.The experimental result shows the effectiveness of the new proposed model.
作者 胡平 彭纪奎
出处 《微电子学与计算机》 CSCD 北大核心 2011年第3期55-58,共4页 Microelectronics & Computer
关键词 粗糙集 遗传算法 神经网络 故障诊断 rough set genetic algorithm neural network fault diagnosis
  • 相关文献

参考文献5

二级参考文献19

  • 1吴信东 邹燕.专家系统技术[M].北京:电子工业出版社,1998..
  • 2Abdelhadi B,Benoudjit A,Naitsaid.N.Application of genetic a lgorithm with a novel adaptive scheme for the identification of induction machine parameters[J].IEEE Transactions on Energy Conversion,2005,20(6):284~291.
  • 3Alba E,Dorronsoro B.The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J].IEEE Transactions on Evolutionary Computation,2005,9(4):126~142.
  • 4Chitat T,Chow W S.Adaptive regularization parameter selection method for enhancing generalization capability of neural networks[J].Artificial Intelligence,1999,107(2):347~356.
  • 5Kamarthi S V,Pittner S.Accelerating neural network training using weight extrapolation[J].Neural Networks,1999,12(12):1 285 ~1 299.
  • 6Baoguo W,Furong G,Polock Y.Neural network approach to predict melt temperature injection processes[J].Chinese J of Chem Eng,2000,8(4):326~331.
  • 7Forcellese A, Gabriealli F, Ruffini R. Effect of the training set size on springback control by neural network in an air bending process[J]. Journal of Material Processing Technology, 1998,80-81(4):493-500.
  • 8Pawlak Z . Rough sets[J]. Communications of ACM, 1995,38(11):89-95.
  • 9Pawlak Z. Rough sets theory and its application to data analysis[J]. Cybernetics and Systems, 1998,29(9):661-668.
  • 10Chan C C. A rough set approach to attribute generalization in data mining[J]. Journal of Information Science, 1998,107(2):169-176.

共引文献35

同被引文献36

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部