期刊文献+

复合BaTiO_3的Li_(0.5)La_(0.5)TiO_3固体电解质的制备和性能 被引量:1

Preparation and properties of Li_(0.5)La_(0.5)TiO_3 mixed with BaTiO_3
下载PDF
导出
摘要 采用高温固相法合成具有高离子电导率的固体电解质Li0.5La0.5TiO3,并以Li0.5La0.5TiO3为母体,通过复合高介电纳米BaTiO3制得一系列不同复合量的复合电解质。对样品进行XRD、SEM分析,并应用交流阻抗技术测试其电导率。母体钛酸镧锂(LLTO)为存在超结构的立方晶体,30℃时晶粒电导率为1.1×10-3S/cm。在复合样品中,LLTO与BaTiO3形成具有棒状结构的钙钛矿型固溶体(Li、La、Ba)TiO3。在低的复合量下(小于10%),复合样品的晶粒电导率比纯样晶粒电导率高。120℃时,母体与复合5%样品的晶粒电导率分别为0.84×10-2、2.39×10-2S/cm,活化能分别为0.22、0.40eV。 A pure phase of the solid electrolyte Li0.5La0.5TiO3(LLTO) was prepared by the conventional solid-state rea-ction method,and those LLTO powders were mixed with BaTiO3 nano particles to prepare the composite.The microstructure morphology and conductivity properties of the composite were investigated by X-ray diffraction,scanning electron microscope and AC impedance method.The grain conductivity of LLTO bulk sample is 1.1×10^-3 S/cm.The perovskite-type solid solution(Li,La,Ba)TiO3 rods can be found in the composite.At the lower dopant concentration(〈10%),the grain conductivity of the composite electrolyte is higher than that of the pure LLTO.The grain conductivities of LLTO and LLTO doped with 5 % BaTiO3 at 120 ℃ are 0.84×10^-2 S/cm and 2.39×10^-2 S/cm respectively.
出处 《电源技术》 CAS CSCD 北大核心 2011年第2期176-178,共3页 Chinese Journal of Power Sources
基金 国家自然科学基金项目(50621201)
关键词 钙钛矿 固相法 固体电解质 钛酸镧锂 BATIO3 perovskite solid-state reaction solid-state electrolyte lithium lanthanum titanate barium titanate
  • 相关文献

参考文献12

  • 1INAGUMA Y, CHEN L Q, MITSURU I,et al. High ionic conduc- tivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86:689-693.
  • 2HARADA Y, HIRAKOSO Y, KAWAI H, et al. Order-disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11) [J]. Solid State Ionics, 1999, 121: 245-251.
  • 3STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanttm titanates: A review[J]. Chemical Materials, 2003, 15:3974- 3990.
  • 4IBARRA J, VAREZ A, SANTAMARIA J, et al. Influence of com- position on the structure and conductivity of the fast ionic conduc- tors La2/3-xLi3xTiO3 (0.03 ≤ x≤0.167) [J]. Solid State Ionics, 2002, 134(3):219-228.
  • 5ERIGUCHI K, HARADA Y, NIWA M. Effects of strained layer near SiO2-Si interface on electrical characteristics of ultrathin gate oxides [J]. Journal of Applied Physics, 2000, 87 (4): 1990-1995.
  • 6WANG G X, YAO P, BRADHURST D H, et al. Reply to comments on "Oxidation mechanism of Si3N4-bonded SiC ceramics by CO, CO2 and steam" by balat[J]. Journal of Material Science, 2000, 19 (21) : 1935-1936.
  • 7JEAN H, KUTTY K, GOVINDAN V. Studies on the ionic transport and structural investigations of Lao.sLicisWiO3 perovskite synthe- sized by wet chemical methods and the effect of Ce, Zr substitution at Ti site[J].Journal of Materials Science, 2005, 40: 4737-4748.
  • 8AINHOA M O, SUSANA G M, EMILIO M, et al. A new La2/3LixTi1_xAlxO3 solid solution: Structure, Microstructure, and Li+ conductivity[J]. Chemical Materials, 2002, 14:2871-2875.
  • 9TAKEUCHI T, ADO K, SATIO Y, et al. Effects of physical properties of(Ba,Pb)TiO3 particles on the ionic conductivity enhancement in NASICON based composite solid electrolytes [J]. Solid State Ionics, 1996, 86/88:565-568.
  • 10TAKEUCHI T, ADO K, SAITO Y, et al. Effect of content of BaTiO3, surface cubic layer on the ionic conductivity enhancement in composite solid electrolytes[J]. Solid State Ionics, 1995, 79:325- 330.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部