期刊文献+

薄壁中孔碳材料的精细控制合成(英文) 被引量:2

Delicately Controlled Synthesis of Mesoporous Carbon Materials with Thin Pore Walls
下载PDF
导出
摘要 利用γ-氧化铝为模板,精细控制合成了一系列具有不同孔径的中孔碳材料.在优化的条件下,所得的碳材料具有孔径分布窄、比表面积高(>1000m2·g-1)、孔容大(最高3.82cm3·g-1)、中孔率高(>99%)的特点,并且孔壁厚度仅有1-2个石墨层.选用了三种不同来源的氧化铝为模板,考察了模板与所得碳材料织构的相关性,并提出用无序模板可控制备碳材料的机理.即在碳包覆氧化铝的复合物前体中,若碳层完整覆盖氧化铝表面并且足够强韧,则所得碳材料可近似复制模板的孔结构,并且碳材料的孔一部分由去除模板所生成,另一部分来源于模板原有的孔.据此模型对所得碳材料的孔容进行了理论计算,其结果有力支持了上述机理. Mesoporous carbon materials with a range of pore sizes were synthesized by a delicately controlled procedure using disordered γ-alumina as template and sucrose as carbon source.Under optimized conditions,the carbon materials had narrow pore size distribution,large surface area (1000 m 2 · g-1),large pore volume (up to 3.82 cm 3 · g-1),high mesopore ratio (99%),and thin pore walls with thickness of 1-2 graphene layers.In the present work,we employed three types of alumina,and investigated the correlation of their texture with that of the resultant carbon materials.A mechanism for the formation of the carbon materials was proposed and tested against experimental data.A carbon sample prepared by this method can approximately duplicate the pore structure of the template,if the carbon layer in the precursor carbon-covered alumina is complete and sufficiently robust.The mesopores of the carbons had two sources,one from the removal of the template particles and the other from the original pores of the template.Calculated pore volumes strongly support the proposed mechanism.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第3期729-735,共7页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(20773004) National Key Basic Research Program of China(973)(2011CB808702)~~
关键词 中孔碳 薄壁 可控合成 无序模板 机理 氧化铝 Mesoporous carbon Thin pore wall Controllable synthesis Disordered template Mechanism Alumina
  • 相关文献

参考文献31

  • 1Han, S. J.; Sohn, K.; Hyeon, T. Chem. Maten 2000, 12, 3337.
  • 2Hartmann, M.; Vinu, A.; Chandrasekar, G. Chem. Mater 2005, 17, 829.
  • 3Zhuang, X.; Wan, Y.; Feng, C. M.; Shen, Y.; Zhao, D. Y. Chem. Mater 2009, 21,706.
  • 4Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, 0.;Ryoo, R. Nature 2001, 412, 169.
  • 5Nam, J. H.; Jang, Y. Y.; Kwon, Y. U.; Nam, J. D. Electrochem. Cnmmun 2004. 6. 737.
  • 6Cui, X. Z.; Shi, J. L.; Zhang, L. X.; Ruan, M. L.; Gao, J. H. Carbon 2009, 47, 186.
  • 7Li, L. X.; Song, H. H.; Chen, X. H. Electrochim. Acta 2006, 51, 5715.
  • 8Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M.Angew. Chem. Int. Edit. 2008, 47, 373.
  • 9Xia, K. S.; Gao, Q. M.; Jiang, J. H.; Hu, J. Carbon 2008, 46, 1718.
  • 10Numaoa, S.; Judaia, K.; Nishijoa, J.; Mizuuchib, K.; Nishia, N. Carbon 2009, 47, 306.

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部