期刊文献+

基于广域测量类噪声信号的节点间振荡相位辨识 被引量:5

Identification of oscillation phase relationship among nodes based on wide area measured ambient signals
原文传递
导出
摘要 弱阻尼低频振荡是影响互联电网安全稳定运行的主要因素,节点间相位关系是表征系统振荡特性的重要参数之一。大量广域实测数据表明,因负荷的随机变化,电网内持续存在类似噪声信号的小幅波动,提出采用自回归滑动平均法对这种类噪声信号进行处理。基于ARMA模型对应Green函数系数与低频振荡模态之间的比例关系,实现对节点间相位关系的估计。将该方法用于对新英格兰系统仿真数据进行处理,辨识结果与小干扰稳定计算结果一致,并进一步将该方法用于处理南方电网实测数据,证明其能有效辨识节点间振荡相位关系。 The weakly damped low frequency oscillation is one of the main factors that influence the stable operation of interconnected power grids.The phase relationship among different nodes is a key characteristic of low frequency oscillation.Small fluctuations caused by random changes of loads exist continuouly in power grids,which can also be called ambient signasl.In this paper,the ARMA method was used to process the ambient signals.According to the relation between the Green function parameter of the ARMA model and the mode shape,the phase relationship between nodes was estimated.The method was used to analyze the stimulation data from New England system,with the results being consistent with the small signal stability calculation results.The approach was then used to process the measured ambient signals in China Southern Power Grid,which validates its feasibility.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第10期1613-1618,共6页 Journal of Tsinghua University(Science and Technology)
基金 电力系统国家重点实验室项目(SKLD08Z01) 中国南方电网有限责任公司重大科技专项
关键词 相位关系 类噪声信号 ARMA法 GREEN函数 phase relationship ambient signal ARMA method Green function
  • 相关文献

参考文献12

  • 1Kunder P. Power System Stable and Control [M]. Beijing: China Power Publishing Company, 2002.
  • 2谷寒雨,陈陈.一种新的大型电力系统低频机电模式计算方法[J].中国电机工程学报,2000,20(9):40-54. 被引量:48
  • 3张晓明,庞晓艳,陈苑文,刘增煌,田芳.四川电网低频振荡及控制措施[J].中国电力,2000,33(6):36-39. 被引量:15
  • 4Hauer J F, Demeure C J, Scharf L L. Initial results in Prony analysis of power response signals[J]. IEEE Transactions on Power Systems, 1990, 5(1) : 80 - 89.
  • 5Hauer J F. Application of prony analysis to the determination of modal content and equivalent models for measured power system response [J]. IEEE Transaction on Power Systems, 1991, 6(3): 1062-1068.
  • 6肖晋宇,谢小荣,胡志祥,韩英铎.电力系统低频振荡在线辨识的改进Prony算法[J].清华大学学报(自然科学版),2004,44(7):883-887. 被引量:110
  • 7郝正航,李少波.白噪声激励下的低频振荡模态参数辨识方法[J].电力系统自动化,2007,31(15):26-29. 被引量:17
  • 8Pierre J W, Trudnowski D J, Donnelly M K. Initial results in electromechanical mode identification from ambient data [J]. IEEE Transactions on Power Systems, 1997, 12(3): 1245 - 1251.
  • 9Wies R W, Pierre J W, Trundnowski D J. Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems [J]. IEEE Transactions on Power Systems, 2003, 18(1) : 167 - 173.
  • 10Trudnowski D. Estimating Electromechanical mode shape from synchrophasor measurements [J]. IEEE Transactions on Power Systems, 2008, 23(3): 1188-1195.

二级参考文献34

共引文献201

同被引文献140

引证文献5

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部