期刊文献+

六自由度磁浮微动台电磁场建模与计算 被引量:4

Six degree-of-freedom maglev microstage electromagnetic field modeling and calculation
原文传递
导出
摘要 为了提高光刻机工件台中微动台的运动精度和加速度,设计了一种将支承和驱动在同一电磁单元中实现的新型Lorentz电机驱动、磁悬浮支承、并联、6自由度微动台结构,应用解析方法建立了微动台磁场模型和特定结构约束下的磁场分布。对微动台电磁力-位移特性进行了分析。采用数值方法计算了微动台电磁单元绕组损耗引起的温升。结果表明:该微动台具有驱动力大、结构简单、散热方便等优点,可为我国自主产权光刻机微动台设计提供参考。 The wafer stage precision and acceleration is enhanced by a parallel six degree-of-freedom magnetic levitation(maglev) microstage actuated by a Lorentz motor.The microstage is designed with the bearing and actuating units in the same structure.The microstage electromagnetic field model is used to get an analytic expression for the magnetic field distribution and the electromagnetic force.The numerical method was used to analyze the nonlinear relationship between the electromagnetic force and the position and calculate the microstage temperature rise caused by the winding loss.The results indicate that the microstage has the advantages of large actuating force,compact struture and fast heat dissipation,and can be used for a domestic lithography stage.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第12期1978-1982,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家“八六三”高技术项目(2009AA04Z148) 国家“九七三”重点基础研究发展计划项目(2009CB724205)
关键词 微动台 电磁场计算 温升 光刻机 microstage electromagnetic field calculation temperature rise lithography
  • 相关文献

参考文献14

  • 1Williams M, Faill P, Bisehoff P, et al. Six degree of freedom mag-lev stage development [J]. Proc SPIE, 1997, 3051: 856 -867.
  • 2刘俊标,薛虹,顾文琪.微纳加工中的精密工件台技术[M].北京:北京工业大学出版社,2005.
  • 3Kim W J, Trumper D L. High-precision magnetic levitation stage for photolithography [J]. Precision Engineering, 1998, 22: 66-77.
  • 4Shan X M, Kuo S K, Zhang J H, et al. Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage [J]. IEEE/ASME Transactions Mechatronics, 2002, 7(1) : 67 - 78.
  • 5Verma S, Kim W J, Shakir H. Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications [J]. IEEE Transactions on Industry Application, 2005, 41(5): 1159 - 1167.
  • 6Kim W J, Verma S. Multi-axis maglev positioner with nanometer resolution over extended travel range [J]. Journal of Dynamic Systems, Measurement and Control, 2007, 129 : 777 - 785.
  • 7Zhang Z P, Menq C H. Six axis magnetic levitation and motion control [J]. IEEE Transactions on Robotics, 2007, 23(2) : 196 - 205.
  • 8Molenaar A. A Novel Planar Magnetic Bearing and Motor Configuration Applied in a Positioning Stage ED-. The Netherlands: Delft University of Technology, 2000.
  • 9Hol S A J. Design and Optimization of a Magnetic Gravity Compensator [D]. The Netherlands: Eindhoven University of Technology, 2004.
  • 10Jansen J W. Magnetically Levitated Planar Actuator with Moving Magnets: Electromechanical Analysis and Design [D]. The Netherlands: Eindhoven University of Technology, 2007.

二级参考文献51

  • 1Binnard M. Planar motor with linear coil arrays. US: 6452292, 2002.
  • 2Binnard M B. System and method to control planar motors. US: 6650079, 2003.
  • 3Takita, M K, Novak T, Hazelton J. Platform positionable in at least three degrees of freedom by interaction with coils. US: 6147421, 2000.
  • 4Ueta T, Yuan B, Teng T C. Moving magnet type planar motor control, US: 2003/0102722, 2003.
  • 5Ueta T, Yuan B. Moving coil type planar motor control, US: 2003/0102721, 2003.
  • 6Hwang J H, Kim H, Chun J S, et al. Planar motor, US: 6548917.
  • 7Trumper D L, Kim W J, Williams M E. Magnetic arrays. US: 5631618, 1997.
  • 8Asakawa T. Two-dimensional precise positioning device for use in a semiconductor manufacturing apparatus, US: 4535278, 1985.
  • 9Asakawa T. Two dimensional driving device for use in a positioning device in a semiconductor manufacturing apparatus. US: 4555650, 1985.
  • 10sakawa T. Two dimensional position devices, US: 4626749, 1986.

共引文献40

同被引文献74

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部