期刊文献+

一种新的快速鲁棒多摄像头目标跟踪方法 被引量:3

A Fast and Robust Multi-Camera Object Tracking Algorithm
原文传递
导出
摘要 多摄像头(视角)目标跟踪系统中,由于视角间存在大量信息冗余可有效提高跟踪鲁棒性.但在传统基于模板匹配方法中,由于视角不同导致匹配不准,会带来较大跟踪误差.针对这个问题提出了一种基于卡尔曼滤波的在线目标信息时空交互算法,利用多摄像头几何限制,实现多个摄像头的信息交互,减少了模板匹配的搜索范围,进而降低了多摄像头目标跟踪算法的计算复杂度.同时通过在线估计卡尔曼滤波模型中噪声功率,并且自适应调整卡尔曼增益将信息交互过程中误差传递降至最小.仿真结果表明,该方法可以实现更鲁棒的目标跟踪. The tracking robustness can be greatly improved by using multi-camera system because of the redundancy of object and background information.However,traditional template matching based multi-camera object tracking suffers from tracking failure brought by different views.To solve this problem,a new algorithm is proposed,which uses the geometrical constraints to communicate object location between different camera views.This approach greatly reduces computation cost.Experiments show that the proposed algorithm is more robust than other methods.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期716-724,共9页 Journal of Fudan University:Natural Science
基金 国家重点基础研究发展计划(973计划)(2006CB705700)资助项目
关键词 在线目标信息时空交互 卡尔曼滤波 多摄像头模板更新 多摄像头单应几何限制 online spatial-temporal object information interaction Kalman filter template update multi-view homography constraint
  • 相关文献

参考文献12

  • 1Orwell J, Remagnino P, Jones G. Multi-camera color tracking [C] // Proceedings of Second IEEE Workshop Visual Surveillance. Fort Collins, CO, USA: IEEE Press, 1999: 14-21.
  • 2Nummaiaro K, Koller-Meier E, Svoboda T, et al. Color-based object tracking in multi-camera environments [C] // Proceedings of 25th DAGM Symposium of Pattern Recognition. Magdeburg, Germany: Springer, 2003: 591-599.
  • 3Zhou Q, Aggarwal J. Object tracking in an outdoor environment using fusion of features and cameras[J]. Image and Vision Computing. 2006,24(11) : 1244-1255.
  • 4Calderara S, Prati A, Cucchiara R. HECOL homography and epipolar based consistent labeling for outdoor park surveillance [J]. Computer Vision and Image Understanding, 2008,111(1): 21-42.
  • 5Khan S, Shah M. Consistent labeling of tracked objects in multiple cameras with overlapping fields of view [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003,25(10) : 1355-1360.
  • 6Yue Z F, Zhou S K, Chellappa R. Robust two-camera tracking using homography [C] //Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, Canada: IEEE Press, 2004,3:iii-1-4.
  • 7Criminisi A, Reid I, Zisserman A. A plane measuring device [J]. Image and Vision Computing, 1999, 17(8) : 625-634.
  • 8Richard H, Andrew Z, Multiple view geometry in computer vision [M]. 2nd Ed. United Kingdom: Cambridge University Press, 2004.
  • 9Brown R G, Hwang P Y C. Introduction to Random Signals and Applied Kalman Filtering [M]. 2nd Ed.Chichester, New York: John Wiley and Sons (WIE), 1992.
  • 10Pan J Y, Hu B, Zhang J Q. An efficient object tracking algorithm with adaptive prediction of initial searching point [C] // IEEE Pacific-Rim Symposium on Image and Video Technology, Lecture Notes in Computer Science. Hsinchu, Taiwan: IEEE Press, 2006:1113- 1122.

同被引文献36

  • 1肖秦琨,雷斌.基于卡尔曼滤波的摄像头目标跟踪[J].西安工业学院学报,2006,26(1):1-4. 被引量:5
  • 2周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 3Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(8) : 1619-1632.
  • 4Zhang K, Song H. Real-time visual tracking via online weighted multiple instance learning[J]. Pattern Recognition, 2013,46(1) : 397-411.
  • 5Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning[C]//Computer Vision and Pattern Recognition(CVPR), 2009. IEEE Conference on. Miami, FL: IEEE Press, 2009: 983-990.
  • 6Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(5) : 564-577.
  • 7Oron S, Bar-Hillel A, Levi D, et al. Locally orderless tracking [C] // Computer Vision and Pattern Recognition(CVPR), 2012 IEEE Conference on. Providence, RI. IEEE Press, 2012. 1940-1947.
  • 8Grabner H, Leistner C, Biscbof H. Semi-supervised on-line boosting for robust traeking[M]//Computer Vision-ECCV 2008. Springer Berlin Heidelberg, 2008: 234-247.
  • 9Grabner H, Matas J, Van Gool L, et al. Tracking the invisible: Learning where the object might be [C]//Computer Vision and Pattern Recognition(CVPR), 2010 IEEE Conference on. San Francisco, CA: IEEE Press, 2010: 1285-1292.
  • 10Wang J, Chen X, Gao W. Online selecting discriminative tracking features using particle filter[C]// Computer Vision and Pattern Reeognition(CVPR), 2005. IEEE Computer Society Conference on. San Diego, CA: IEEE Press, 2005,2: 1037-1042.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部