摘要
本文在快速进化规划基础上,提出了一种解决组合优化问题的自适应柯西进化规划ACEP.该算法融合了柯西变异的优点,通过调整参量r来适当的改变搜索的步长,相对于经典进化规划CEP和快速进化规划FEP只需一半的种群数量便可快速到达问题的最优解,最后0/1背包问题的对比实验结果表明了其优越性.
Based on fast evolutionary programming,a novel self-adaptive Cauchy evolutionary programming ACEP to solve the combinatorial optimization problem is proposed.It adopts advantages of Cauchy mutation and alters the search steps in time by adjusting the parameter.Compared with classic evolutionary programming and fast evolutionary programming,it only needs a half population size can be achieved the optimal solutions.The empirical experiments on 0/1 knapsack problem are carried out,the results have supported the superiority of Self-adaptive Cauchy evolutionary programming.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2011年第2期375-377,共3页
Acta Electronica Sinica
基金
国家自然科学基金(No.90818007)
国家863高技术研究发展计划(No.2009AA01Z203)
关键词
自适应柯西进化规划
快速进化规划
背包问题
self-adaptive Cauchy evolutionary programming
fast evolutionary programming
knapsack problem