期刊文献+

一种新的解决组合优化问题的自适应柯西进化规划ACEP 被引量:1

A Novel Self-Adaptive Cauchy Evolutionary Programming for Combinatorial Optimization
下载PDF
导出
摘要 本文在快速进化规划基础上,提出了一种解决组合优化问题的自适应柯西进化规划ACEP.该算法融合了柯西变异的优点,通过调整参量r来适当的改变搜索的步长,相对于经典进化规划CEP和快速进化规划FEP只需一半的种群数量便可快速到达问题的最优解,最后0/1背包问题的对比实验结果表明了其优越性. Based on fast evolutionary programming,a novel self-adaptive Cauchy evolutionary programming ACEP to solve the combinatorial optimization problem is proposed.It adopts advantages of Cauchy mutation and alters the search steps in time by adjusting the parameter.Compared with classic evolutionary programming and fast evolutionary programming,it only needs a half population size can be achieved the optimal solutions.The empirical experiments on 0/1 knapsack problem are carried out,the results have supported the superiority of Self-adaptive Cauchy evolutionary programming.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第2期375-377,共3页 Acta Electronica Sinica
基金 国家自然科学基金(No.90818007) 国家863高技术研究发展计划(No.2009AA01Z203)
关键词 自适应柯西进化规划 快速进化规划 背包问题 self-adaptive Cauchy evolutionary programming fast evolutionary programming knapsack problem
  • 相关文献

参考文献7

  • 1Xin Yao. Global opfimisation by evolutionary algorithms[ A ]. Proceedings of Second Aizu International Symposium on Paral lel Algorithms/Architecture Synthesis [ C ]. USA: IEEF. Press, 1997. 282 - 291.
  • 2Friedrich T,Jun He, Hebbinghaus N. On improving approximate solutions by evolutionary algorithms [ A ]. Proceedings of the 2007 IEEE. Congress on Evolutionary Computation[ C[. USA: IEEE. Press, 2007.2614 - 2621.
  • 3FollyK A, Venayagamoorthy G K. Effects of learning rate on the performance of the population based incremental learning algorithm[ A]. Proceedings of the 2009 International Joint Con- ference on Neural Networks[ C ]. USA, Atlanta, 2009. 861 - 868.
  • 4H-P Schwefel. Evolution and Optimum Seeking[ M ]. New York: Wiley, 1995.
  • 5Xin Yao, Yong Liu, Guangming Lin. Evolutionary programming made faster[ J ]. IEEE Transactions on Evolutionary Computa tion, 1999,3(2) :82 - 102.
  • 6Yong Liu, Xin Yao. How to control search step size in fast evo lutionary programming [ A ]. Proceedings of the 2002 IEEE Congress on Evolutionary Computation[ C]. USA: IEEE, Press, 2002.652 - 656.
  • 7Rudolph G. Local convergence rates of simple evolutionary al gorithms with cauchy mutations[ J]. IEEE Transactions on Evo lutionary Computation, 1997,1 (4) :249 - 258.

同被引文献17

  • 1Farina M, Amato P. On the optimal solution definition for many-criteria optimization problems [ A ]. Proceedings of NAFIPS-FLINT International Conference[ C]. Piscataway N J: IEF.E Press, 2002. 232 - 238.
  • 2Reed P M, Kollat J B. Multi-period many-objective groundwa- ter monitoring design given systematic model errors and uncer- tainty[ J]. Advances in Water Resources, 2012,35(1) :55 - 68.
  • 3YUAN Zhaohui, SUN shilei, WANG Gaofeng. Efficient scheme for path recognition from integrated circuit layout [ J ]. Chinese Journal of Eleclronics, 2010,19(4) :618 - 630.
  • 4Luque M,Miettinen K, et al. Incorporating preference informa- tion in interactive reference point methods for multiobjective optimization[ J ]. Omega, 2009,37 ( 2 ) : 450 - 462.
  • 5Deb K, Kumar A. Interactive Evolutionary Multi-objective Op- timization and Decision-making Using Reference Direction Method[ R ]. KanGAL Technical Report No. 2007001, Indian Institute of Technology Kanpur, India,2007.
  • 6Singh H K, Isaacs A,Ray T.A Pareto comer search evolution- ary algorithm and dimensionality reduction in many-objective optimization problems [J]. lEvEE Transactions on Evolutionary Computation, 2011,15 (4) : 539 - 556.
  • 7Jaimes A L, et al. Objective space partitioning using conflict information for many-objective optimization[ J]. Lecture Notes in Computer Science, 2011,6238 : 657 - 666.
  • 8Murata T, Taki A. Examination of the performance of objec- tive reduction using correlation-based weighted-sum for many objective knapsack problems[ A] .Proceedings of 10th Interna- tional Conference on Hybrid Intelligent Systems[ C ]. Atlanta, GA: IF.EE Press,2010. 175 - 180.
  • 9Lindroth P, et al. Approximating the Pareto optimal set using a reduced set of objective functions [ J ]. European Journal of Operational Research,2010,207(3) : 1519 - 1534.
  • 10Harfington J. The desirability function[ J]. Industrial Quality Control, 1965,21(10) :494 - 498.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部