摘要
为解决富含非线性流形特征的水下钴结壳超声识别问题,尝试引入一类鉴别流形正则化最小二乘机(Discriminatively Regularized Least-Squares Classifier,DRLSC).首先分析了原始DRLSC,指出其对应优化问题的非凸性.然后结合Ho-Kashyap分类器,提出了具有凸性的DRLSC模型,并给出了该模型的核化版本(Kernel DRLSC,KDRLSC).最后,将该模型应用于水下钴结壳超声识别中.实验结果表明,采用本文的KDRLSC进一步提高了钴结壳的识别分类正确率.
The surface of cobalt crust contains plenty of nonlinear manifold features.In order to solve ultrasonic recognition of cobalt crust using its manifold features,a kind of Discriminatively Regularized Least-Squares Classifier(DRLSC) is introduced in this paper.At first,the fact is found that the original DRLSC is not of convexity in general.And then,based on Ho-Kashyap least-squares algorithm,a modified DRLSC which is of convexity and its kernelized edition(Kernel DRLSC,KDRLSC) are proposed.At last,the proposed classifier is used in ultrasonic recognition of cobalt crust.The experimental results show that the echo recognition correct rates of cobalt crust is improved using the proposed KDRLSC classifier.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2011年第2期448-452,共5页
Acta Electronica Sinica
基金
国家自然科学基金(No.50875265
No.50474052)