期刊文献+

基于HHT方法的果蝇鸣声特征提取及分类 被引量:7

Feature extraction and classification of fruit fly's flight sound based on HHT
原文传递
导出
摘要 采用HHT方法对同种内2个不同品系果蝇翅振鸣声进行特征分析,分别提取果蝇翅振鸣声前10阶IMF能量与信号总能量的比值,HH谱图的低频段、中频段、高频段的相对能量值作为特征向量.设计BP神经网络分类器识别不同品系果蝇.实验结果表明,用HHT方法提取特征,神经网络识别不同品系果蝇的方法是可行而有效的,为进一步鉴别果蝇种内关系提供了新的思想和方法. Using HHT method,the paper analyzed the wing vibration sound of two different strain of fruit flies in the same species.It extracted effective characteristics of fruit fly's wing vibration sound,which contained ratios of first ten IMF and signal total energy,the relative energies of low-frequency stage,middle-frequency stage and high-frequency stage in HH spectrum.Then,the paper designed BP neural network to identify different strain of fruit flies.The experiment result indicated that it was feasible and effectivethe method of extracting features by HHT and identifying different strain of fruit flies by neural network.And it provided a new idea and technique for further discrimination of intraspecies relationship of fruit fly.
作者 贾春花 郭敏
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期152-157,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10974130)
关键词 果蝇鸣声 HHT方法 特征提取 BP神经网络 分类 flight sound of fruit fly HHT method feature extraction BP neural network classification
  • 相关文献

参考文献12

二级参考文献95

共引文献60

同被引文献59

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部