期刊文献+

氢氧焰燃烧制备纳米Al_2O_3颗粒及其分散性能 被引量:4

Preparation of Nano-Al_2O_3 Particles via H_2/Air Flame Synthesis and Their Dispersion Performance
原文传递
导出
摘要 利用多重射流氢氧燃烧反应器,以AlCl3为前驱体制备了具有不同形貌和晶型结构的Al2O3纳米颗粒,表征了其形貌、晶型结构、比表面积、粒径分布等性能,考察了火焰燃烧形式和反应区最高温度等因素对颗粒性能的影响规律.结果表明,随反应温度升高,Al2O3粒径不断长大,形貌从具有链状结构的不规则颗粒逐渐转变为分散性良好的球形颗粒;同时随反应温度升高和在高温火焰中停留时间延长,晶型由单纯γ相逐渐转变为δ和δ*相.产品纳米Al2O3颗粒具有较强亲水性,其分散液具有较好的稳定性.探讨了高温快速反应过程中颗粒和团聚体的生长机理,最终产物的粒径和团聚体形貌取决于各主要影响条件的相互竞争. Nano-Al2O3 particles were prepared via H2/air flame synthesis in a multi-jet reactor with anhydrous AlCl3 as precursor,the morphology,structure,crystallinity,size and specific surface area of the prepared nanoparticles were investigated,and the influences of flame configuration and maximum temperature in the reaction zone on their properties characterized.The results showed that the size of particles increased with the flame temperature increasing,and their morphology changed from irregular chain-like aggregates to well dispersed spherical nanoparticles.At the same time,a simple γ-phase was gradually transformed to δ and δ* phases.Dispersion of nano-Al2O3 particles had strong stability.The growth mechanism of particles and aggregates at rapid high-temperature reaction was discussed.The morphology and particle size of prepared nanoparticles depended on the competition among the key influential factors.
出处 《过程工程学报》 CAS CSCD 北大核心 2011年第1期137-142,共6页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:20925621 20706015 20906027) 上海市启明星计划基金资助项目(编号:09QH1400700) 上海市重点实验室专项基金资助项目(编号:09DZ2202000 10DZ2211100) 上海市纳米专项基金资助项目(编号:0952nm02000 0952nm02100 1052nm02300)
关键词 多重射流燃烧 纳米氧化铝 晶相转变 生长机理 multi-jet flame combustion nano-Al2O3 phase transformation growth mechanism
  • 相关文献

参考文献14

  • 1Bolelli G, Rauch J, Cannillo V, et al. Microstructural and Tribological Investigation of High Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings [J]. J. Therm. Spray Technol., 2009, 18(1): 35-49.
  • 2Buchel R, Strobel R, Baiker A, et al. Flame-made Pt/K/Al2O3 for NOх Storage-Reduction (NSR) Catalysts [J]. Top. Catal., 2009, 52: 1799-1802.
  • 3胡恒瑶,乔瑜,古宏晨.节能灯用溶胶——凝胶法γ-Al_2O_3保护膜的研究[J].光源与照明,2006(1):19-21. 被引量:3
  • 4Batz-Sohn C, Storeck A, Scharfe S. Tailor-made Silica and Alumina for Inkjet Media Coatings [A]. Proceedings of International Conference on Digital Printing Technology 20 [C]. 2004. 805-810.
  • 5曾文明,陈念贻,归林华,王浚,高濂,郭景坤.无机盐制备氧化铝纳米粉及其物理化学的研究[J].无机材料学报,1998,13(6):887-892. 被引量:37
  • 6石涛,周箭,申乾宏,杨辉.水热辅助溶胶-凝胶法制备纳米晶γ-Al2O3及表征[J].无机化学学报,2009,25(5):915-919. 被引量:4
  • 7张洋,孙国新,陈志,于海波.沉淀法结合超临界CO_2干燥制备纳米γ-Al_2O_3[J].无机化学学报,2009,25(7):1295-1298. 被引量:6
  • 8Varatharajan K, Dash S, Arunkumar A, et al. Synthesis of Nanocrystalline а-Al2O3 by Ultrasonic Flame Pyrolysis [J]. Mater. Res. B., 2003, 38: 577-583.
  • 9Tok A I Y, Boey F Y C, Zhao X L. Novel Synthesis of Al2O3 Nano-particles by Flame Spray Pyrolysis [J]. J. Mater. Process. Technol., 2006, 178: 270-273.
  • 10Kammler H K, Madler L, Pratsinis S E. Flame Synthesis of Nanoparticles [J]. Chem. Eng. Technol., 2001, 24(6): 583-596.

二级参考文献49

  • 1余忠清,赵秦生,张启修.溶胶-凝胶法制备超细球形氧化铝粉末[J].无机材料学报,1994,9(4):475-479. 被引量:41
  • 2Jun Y W, Choi J S, Cheon J W. Angew. Chem. Int. Ed., 2006, 45:3414-3419
  • 3Zou G F, Li H, Zhang Y G, et al. Nanotechnology, 2006,17: S313-S320
  • 4Almyasheva O V, Korytkova E N, Maslov A V, et al. Inorg. Mater., 2005,41:460-467
  • 5Zhu H Y, Gao X P, Song D Y, et al. Microporous Mesoporous Mater., 2005,85:226-233
  • 6Zhang H Y, Shan G B, Liu H Z, et al. Chem. Eng. Commun., 2007,194:938-945
  • 7Bartsch M, Saruhan B, Schmucker M, et al. J. Am. Ceram. Soc., 1999,82:1388-1392
  • 8Lietti L, Saruhan P, Nova I, et al. J. Catal., 2001,204:175-191
  • 9Chen X W, Zhang T, Ying P, et al. Chem. Commun., 2002, 3:288-289
  • 10Wang S Y, Li X A, Wang S F, et al. Mater. Lett., 2008,62:3552-3554

共引文献46

同被引文献30

  • 1韩秀山.白炭黑的生产工艺及应用[J].橡胶参考资料,2004,34(4):32-34. 被引量:7
  • 2张顺利,郑洪涛,穆勇.EDC模型在三维燃烧流场数值模拟的应用[J].应用科技,2005,32(4):48-50. 被引量:6
  • 3刘东亮,金永中,陈敏.纳米Al_2O_3粉末的制备与防团聚研究[J].山东陶瓷,2005,28(4):19-23. 被引量:8
  • 4胡彦杰,李春忠,顾锋,姜海波,赵尹.多重射流燃烧反应制备的TiO_2/SiO_2纳米复合颗粒的形态和结构[J].无机化学学报,2006,22(12):2253-2257. 被引量:6
  • 5Nadimpalli N K V. Modeling and simulation of carbon black synthesis in an aerosol flame reactor [J]. Advanced Powder Technology, 2011, 22(1): 141-149.
  • 6Ji Yanhui, Sohn Hong Yong modeling of a flame reaction Computational fluid dynamic process for silica nanopowder synthesis from tetraethylorthosilicate [J]. J Am Ceram Soc 2007, 90(12):3838-3845.
  • 7Yu Mingzhou, I,in Jianzhong. Numerical simulation of nano particle synthesis in diffusion flame [J]. Powder Technology. 2008, 181(1): 9-20.
  • 8Gupta A K Bolz. Effect of air preheat temperature and oxy gen concentration on flame structure and emission [J]. Jour- nal of Energy Resources Technology, 1999, 121 (3) : 209- 216.
  • 9Andrae J C G, Biornbom P H. gen flames over platinum and Wall effects of laminar hydro inert surfaces [J]. American Institute of Chemical Engineering Journal, 2000, 46 ( 7 ) 1454-1460.
  • 10Giovangigli V, Smooke M D. Extinction of strained premixed laminar flames with complex chemistry[J]. Combustion Sci ence and Technology, 1987, 53(1): 23-49.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部