摘要
对拟阵Q6与W4可F-线性表示的构造进行了研究.用E(G)在R上的链群F0(G,R)表示G的圈拟阵M(G);用松弛拟阵M的极小圈超平面X的方法得到拟阵M′.得到主要结果为:(i)用链群表示了M(K4),M(W4);(ii)用松弛极小圈超平面的方法从M(K4)构造了Q6,从M(W4)构造了W4,找出了W4可线性表示的所有域F.
The constructions of the F-respresentable matroid Q6 and W4 are investigated,the cycle matroid M(G) of G is charactered by the chain-group F0(G,R) on E(G) over R,and the matroid M′ is obtained by relaxing the circuit-hyperperplane X of the matroid M.It is proved thatM(K4) and M(W4) can be respresented by chaingroup and Q6 is construct by relaxing the circuit-hyperplane.W4 is constructed by M(W4) and the field F thatW4 is representable is obtained.
出处
《大学数学》
2011年第1期40-44,共5页
College Mathematics