期刊文献+

多时滞合作系统的稳定性与全局Hopf分支 被引量:8

Stability and Global Hopf Bifurcation for a Cooperative System with Two Delays
下载PDF
导出
摘要 以时滞为参数,研究了一类多时滞合作系统的正平衡点的稳定性及局部Hopf分支的存在性.在此基础上结合一般泛函微分方程的全局Hopf分支定理,讨论了该系统全局Hopf分支的存在性. This paper consider the stability and local Hopf bifurcation for a cooperative system when rate τ regarding as a parameter,combing the global Hopf bifurcation theorem for general functional differential equations,and we investigate the existence of global Hopf bifurcation.
出处 《大学数学》 2011年第1期80-84,共5页 College Mathematics
基金 安徽省自然科学基金项目(070416225) 安徽省教育厅高校优秀青年人才基金项目(2009SQRZ169) 宿州学院自然科学基金项目(2008yzk01)
关键词 时滞 稳定性 HOPF分支 delay stability Hopf bifurcation
  • 相关文献

参考文献7

  • 1Ma Z. Stability of predation models with time delays[J]. Applicable Analysis, 1986, 22(3&4): 169--192.
  • 2Lu Z, Wang W. Global stability for two-species I.otka-Volterra systems with delay[J]. J. Math. Anal. Appl. , 1997, 208(4): 277--280.
  • 3Cooke K, Grossman Z. Discrete delay, delay, distributed delay and stability switchs[J]. J. Math. Anal. Appl. , 1982, 86:592-27.
  • 4Hale J K, Lunels M V. Introduction to Functional Differential Equation[M]. New York: Spring-Verlag, 1993.
  • 5宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 6Wang W, Ma Z. Harmless delay for uniform persistence[J]. J. Math. Anal. Appl. , 1991, 158(1) :256--268.
  • 7Wu J. Symmetric functional differential equations and neural networks with memory[J]. Trans. Ammer. Math. Soc. , 1998, 198: 4799--4838.

二级参考文献14

  • 1Ma, Z., Stability of predation models with time delay [J], Applicable Analysis, 22 (1986),169-192.
  • 2Freedman, H. I. & Rao, V. S. H., Stability criteria for a system involing two time delays[J], SIAM J. Appl. Anal., 46(1986), 552-560.
  • 3Lu, Z. & Wang, W., Global stability for two-species Lotka-Volterra systems with delay[J], J. Diff. Eqns., 208(1997), 277-280.
  • 4Freedman, H. I. & Ruan, S., Uniform persistence in functional differential equations[J], J. Diff. Eqns., 115(1995), 173-192.
  • 5Leung, A., Periodic solutions for a prey-predator delay equation [J], J. Diff. Eqns.,26(1977), 391-403.
  • 6Kuang, Y., Delay Differential Equations with Applications in Population Dynamics[M], Academic Prees, New York, 1993.
  • 7Beretta, E. & Kuang, Y., Convergence results in a well-known delayed predator-prey system [J], J. Math. Anal. Appl., 204(1996), 840-853.
  • 8May, R. M., Time delay versus stability in population models with two and three trophic levels [J], Ecology, 4(1973), 315 325.
  • 9Faria, T., Stability and bifurcation for a delay predator-prey model and the effect of diffusion [J], J. Math. Anal. Appl., 254(2001), 433-463.
  • 10Erbe, L. H., Krawcewicz, W., Geba, K. & Wu, J., S1-degree and global Hopf bifurcation theory of functional-differential equations [J], J. Diff. Eqns., 98(1992), 277 298.

共引文献26

同被引文献44

  • 1宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 2马之恩,周义仓.常微分方程的定性与稳定性方法[M].北京:科学出版社,2001.
  • 3Cooke K,Grossman Z. Discrete delay,delay,distributed delay and stability switchs[J]. J Math Anal Appl,1982,86.592 - 27.
  • 4Wang Wendi,Ma Zhien. Harm less delay for uniform persistence[J]. J Math Anal Appl,1991,158(1):256 - 268.
  • 5Freedman H I, Strea Hari Rao V. The trade-off between mutual interference and time lags in predator-prey systems[J]. Bull Math Boil, 1983,45(6) : 991 - 1004.
  • 6Lotka A J. Elements of Physical Biology [M]. Galtimore.. Williams and Wilkins, 1925.
  • 7SONG Yongli, WEI Junjie. Local Hopf Bifurcation and Global Periodic Solutions in a Delayed Predator-Prey System [J]. Journal of Mathematical Analysis and Applications, 2005, 301(1): 1 -21.
  • 8WEN Xianzhang, WANG Zhicheng. The Existence of Periodic Solutions for Some Models with Delay [J]. Nonlinear Analysis Real World Applications, 2002, 3(4): 567 -581.
  • 9ZHANG Yongpo, MA Mingiuan, HUANG Qingdao. Analysis of Predator-Prey Model with Disease in the Prey [J]. Journal of Jilin University (Science Edition), 2011, 49(2): 191- 194.
  • 10SONG Zhiqiang, WAN Aying. Stability and Hopf Bifurcation Analysis in a Mutualistic System with Delays [J]. Journal of Chongqing Normal University (Natural Science), 2013, 30(3): 55-58.

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部