摘要
利用局部微分求积法(LDQ)对非线性薛定谔(Schr dinger)方程进行数值求解,分别模拟了单深水孤立波运动,同向双深水孤立波追赶碰撞耦合运动,高阶孤立波振动和孤立波的反射与透射现象,得到各情况下的数值结果。从数值模拟及图像中揭示非线性薛定谔方程的性质和特点,阐述深水孤立波形成的物理意义、运动方式和运动规律,分析在不同初值条件下波形的变化特点,验证了LDQ法对该类问题的有效性。
The nonlinear Schrdinger equation describes the evolution of the envelope of modulated wave groups.This equation has soliton solutions.Numerical simulations of Nonlinear Schrdinger Equation are studied using localized differential quadrature method.Propagation of a deep-water soliton and interaction of two deep-water solitons in the same direction,the Higher-order soliton′s vibration and the soliton′s reflection and transmission are simulated.The numerical results of every case are obtained.The properties and characteristics of the nonlinear Schrdinger equation are obtained from numerical simulations and images.The physical meanings,motion modes and motion laws of deep-water solitons are discussed.The waveform changes at different initial conditions are analyzed.The validity of LDQ method for solving this kind of problems is proved.
出处
《海洋工程》
CSCD
北大核心
2011年第1期41-46,共6页
The Ocean Engineering
基金
创新研究群体科学基金资助项目(50921001)
国家重点基础研究发展计划资助项目(2010CB83270)
关键词
局部微分求积法
孤立波
非线性薛定谔方程
数值模拟
localized differential quadrature method
soliton
nonlinear Schrdinger equation
numerical simulation