期刊文献+

低压透平叶片表面合成射流非定常流动控制机理研究 被引量:4

Unsteady Flow Control Mechanism of Synthetic Jet on a Low Pressure Turbine Blade
下载PDF
导出
摘要 基于Langtry-Menter转捩模型的SST湍流模型,通过求解三维非定常雷诺时均Navier-Stokes方程,数值研究了低雷诺数下合成射流涡发生器对Pak-B低压透平叶片吸力面流动分离的影响,揭示了低压透平叶片表面合成射流非定常流动的控制机理.结果表明,引入合成射流涡发生器能够抑制甚至消除低雷诺数下叶片吸力面上的流动分离.在雷诺数为25 000、自由流湍流强度为0.08%下,提高射流控制频率有助于增强合成射流涡发生器对低压透平叶片表面流动分离的控制效果,减少流动损失.当控制频率为10Hz时,叶栅出口的相对总压损失系数为0.42;当控制频率增加到20Hz时,相对总压损失系数仅下降到0.41.这表明,当合成射流控制频率大于10Hz时,继续增加控制频率来减少叶片表面流动损失的效果是不明显的. The three-dimensional viscous unsteady Reynolds-averaged Navier-Stokes equations were solved to simulate the flow on a low pressure turbine blade.The effects of synthetic jet on the flow separation in the suction side of the Pak-B low pressure turbine blade were numerically investigated by the SST(shear stress transport) turbulence model coupled with the Langtry-Menter transition model for turbulent flow.The unsteady flow control mechanism of synthetic jet and the flow structure were also presented.The numerical results show that the flow separation in the blade suction side can be effectively suppressed even eliminated by introducing the synthetic jet with the proper control frequency.At the Reynolds number of 25 000 and the free stream turbulence intensity of 0.08%,the increase in synthetic jet frequency can improve the control effectiveness of the flow separation on the low pressure turbine blade and reduce the flow loss.When the synthetic jet frequency is 10 Hz,the flow loss coefficient relative to the total pressure at the turbine blade exit is 0.42.However,the relative loss coefficient decreases to only 0.41 when the synthetic jet frequency increases to 20 Hz.These results imply that the flow loss does not drop clearly for the low pressure turbine blade at low Reynolds number when the synthetic jet frequency is greater than 10 Hz.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第3期95-101,共7页 Journal of Xi'an Jiaotong University
基金 陕西省自然科学基金资助项目(SJ08-ZT06)
关键词 流动分离控制 合成射流 低雷诺数 低压透平叶片 数值模拟 flow separation control synthetic jet low Reynolds number low pressure turbine blade numerical simulation
  • 相关文献

参考文献11

  • 1SHARMA O. Impact of Reynolds number on low pressure turbine performance, CP-1998- 206958 [R]. New York, USA: NASA, 1998: 65-70.
  • 2SMITH B L, GLEZER A. The formation and evolu- tion of synthetic jets [J]. Physics of Fluids, 1998, 10(9):2281-2297.
  • 3SCHAEFFLER N. The Interaction of a synthetic jet and a turbulent boundary layer, AIAA 2003-0643 [R]. Reston, VA, USA: AIAA, 2003.
  • 4AMITAY M, KIBNS V, PAREKH D, et al. The dynamics of flow reattachment over a thick airfoil controlled by synthetic jet actuators, AIAA 1999-1001 [R]. Reston, VA, USA: AIAA, 1999.
  • 5RIZZETTA D P, VISBAL M R. Numerical simulation of separation control for a transitional highly-loaded low-pressure turbine[J]. AIAA Journal, 2005, 43 (9):1958-1967.
  • 6肖中云,牟斌,陈作斌,刘刚.零质量射流与分离控制的数值模拟[J].空气动力学学报,2006,24(1):46-50. 被引量:12
  • 7郝礼书,乔志德.合成射流用于翼型分离流动控制的研究[J].西北工业大学学报,2006,24(4):528-531. 被引量:23
  • 8MENTER F R, LANGTRY R 13. A correlation-based transition model using local variables: part I model formulation, ASME-GT 2004-53452 [R]. New York, USA: ASME, 2004.
  • 9LANGTRY R B, MENTER F R. A Correlation-based transition model using local variables: part Ⅱ test cases and industry applications, ASME-GT 2004-53454 [R]. New York, USA: ASME, 2004.
  • 10LIU Xiaomin, ZHOU Haiyang. Numerical investiga- tions of flow separation control for a low pressure tur- bine blade using steady and pulsed vortex generator jets[C]//Basic Gas Turbine Metallurgy and Repair Technology Workshop. New York, USA: ASME, 2010: 1253-1262.

二级参考文献16

  • 1HASSAN A A.Application of zero-net-mass jets for enhanced rotorcraft aerodynamic performance[J].AIAA Journal,2001,38(3):478-485.
  • 2袁先旭,非定常流动数值模拟及飞行器动态特性分析研究[D].[博士学位论文],中国空气动力研究与发展中心,2002.4.
  • 3WEISS J M,SMITH W A.Preconditioning applied to variable and constant density flows[J].AIAA Journal,1995,33(11):2050-2057.
  • 4SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[R].AIAA 92-0439,1992.
  • 5MENTER F.Zonal two equation turbulence models for aerodynamic flows[R].AIAA 93-2906,1993.
  • 6周铸,牟斌.多重网格技术研究及其应用[A].第四届海峡两岸航空航天学术研讨会论文集[C],2004.
  • 7KRAL L D,DONOVAN J F.Numerical simulation of synthetic jet actuators[R].AIAA 97-1824,1997.
  • 8Smith B L, Glezer A. The Formation and Evolution of Synthetic Jets. Physics of Fluids, 1998, 10(9) : 2281~2297
  • 9Amitay M, Kibens V, Parekh D, Glezer A. The Dynamics of Flow Reattachment over a Thick Airfoil Controlled by Synthetic Jet Actuators. AIAA 99-1001, 1999
  • 10Davis S A, Glezer A. Mixing Control of Fuel Jets Using Synthetic Jet Technology: Velocity Field Measurements.AIAA 99-0447, 1999

共引文献32

同被引文献42

  • 1刘华坪,颜培刚,陈浮.利用等离子控制凸包流动分离的数值模拟[J].航空动力学报,2009,24(3):596-601. 被引量:4
  • 2倪亚琴.涡流发生器研制及其对边界层的影响研究[J].空气动力学学报,1995,13(1):110-116. 被引量:32
  • 3方崇智 萧德云.过程辨识[M].北京:清华大学出版社,2003..
  • 4周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001.
  • 5Smith B L, Glezer A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281-2297.
  • 6Catalano P, Wang M, Iaccarino G, et al. Optimization of cylinder flow control via actuators with zero net mass flux[R]. Proceedings of the Summer Program, Stanford University, Stanford, CA 94305-3035, Center for Turbulence Research, 2002: 297-303.
  • 7Gallas Q, Mathew J, Kasyap A, et al. Lumped element modeling of piezoelectric-driven synthetic jet actuators [J]. AIAAJournal, 2003, 41(2): 240-247.
  • 8Pes M, Lukovic B, Orkwis P D, et al. Modeling of two dimensional synthetic jet unsteadiness using neural network-based deterministic source terms[C]//AIAA Paper, California, USA, 2002.
  • 9Ma X, Fan Z, Da X. Dynamic mesh method for two-dimensional synthetic jet[J]. Procedia Engineering, 2012, 31(2012): 422-427.
  • 10Kim S H, Kim C. Separation control on NACA23012 using synthetic jet[J] . Aerospace Science and Technology, 2009, 13(4-5): 172-182.generator jets[J]. Journal of.

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部