期刊文献+

Growth and microstructure properties of microcrystalline silicon films deposited using jet-ICPCVD

Growth and microstructure properties of microcrystalline silicon films deposited using jet-ICPCVD
原文传递
导出
摘要 Microcrystalline silicon films were deposited at a high rate and low temperature using jet-type inductively coupled plasma chemical vapor deposition(jet-ICPCVD).An investigation into the deposition rate and microstructure properties of the deposited films showed that a high deposition rate of over 20 nm/s can be achieved while maintaining reasonable material quality.The deposition rate can be controlled by regulating the generation rate and transport of film growth precursors.The film with high crystallinity deposited at low temperature could principally result from hydrogen-induced chemical annealing. Microcrystalline silicon films were deposited at a high rate and low temperature using jet-type inductively coupled plasma chemical vapor deposition(jet-ICPCVD).An investigation into the deposition rate and microstructure properties of the deposited films showed that a high deposition rate of over 20 nm/s can be achieved while maintaining reasonable material quality.The deposition rate can be controlled by regulating the generation rate and transport of film growth precursors.The film with high crystallinity deposited at low temperature could principally result from hydrogen-induced chemical annealing.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第3期1-5,共5页 半导体学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.60990314) the State Key Development Program for Basic Research of China(No.2007CB936300)
关键词 microcrystalline silicon jet-ICPCVD high rate convective transfer CRYSTALLINITY microcrystalline silicon; jet-ICPCVD; high rate; convective transfer; crystallinity
  • 相关文献

参考文献1

二级参考文献11

  • 1van den Donker M N, Rech B, Finger F, Kessels W M M and van de Sanden M C M 2005 Appl. Phys. Lett. 87 263503.
  • 2Losurdo M, Giangregorio M, Sacchetti A, Capezzuto P, Bruno G and Giorgis F 2006 Appl. Surf. Sci. 253 287.
  • 3Sorokin M Kroesen G M W and Stoffels W W 2004 IEEE Trans. Plasma Sci. 32 731.
  • 4Roschek T, Rech B, Miiller J, Schmitz R and Wagner H 2004 Thin Solid Films 451-452 466.
  • 5Guo L, Kondo M, Fukawa M, Saitoh K and Matsuda A 1998 Jpn. J. Appl. Phys. Part 2 37 L1116.
  • 6Rech B, Rosehek T, Repmann T, Miiller J, Schmitz R and Appenzeller W 2003 Thin Solid Films 427 157.
  • 7Amanitides E, Hammad A, Katsia E and Mataras D 2005 J. Appl. Phys. 97 073303.
  • 8van den Donker M N, Rech B, Kessels W M M and van de Sanden M C M 2007 New Journal of Physics 9 280.
  • 9Chen Y S, Gao X Y, Yang S E, Lu J X and Gu J H 2007 Acta Phys. Sin. 56 4122 (in Chinese).
  • 10Custer J S, Thompson M O, Jacobson D C, Poate J M, Roorda S, Sinke W C and Spaepen F 1993 Appl. Phys. Lett. 64 437.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部