期刊文献+

基于约简支持向量机的快速入侵检测算法 被引量:6

Fast Intrusion Detection Algorithm Based on Reduced SVM
下载PDF
导出
摘要 标准支持向量机(SVM)算法受时间和空间复杂度约束,无法有效地处理大规模网络入侵检测问题.文中基于SVM的几何解释,提出了一种基于并行凸包分解计算和支持向量机的入侵检测分类算法(PCH-SVM).该算法借助凸包的分解和并行计算快速提取训练样本空间几何凸包的顶点,构建约简SVM训练样本集.实验结果表明,该算法可以在不造成精度损失的前提下,降低SVM训练的时空复杂度,加速入侵检测分类器的建模和检测. Owing to the constraints of time and space complexity,the standard SVM(Support Vector Machine) algorithm cannot effectively deal with large-scale network intrusion detection.In order to solve this problem and in view of the geometric interpretation of SVM,an intrusion detection classification algorithm named PCH-SVM is proposed based on the parallel convex hull decomposition and the SVM.With the help of convex hull decomposition and parallel computing,this algorithm can fast extract the vertices of convex hull of the original training samples to build a reduced SVM training set.Experimental results show that the proposed algorithm can effectively reduce the time and space complexity during SVM training,and speeds up the modeling and detection of intrusion detection classifier without any accuracy loss.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期108-112,124,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60773094) 杭州市电子商务与信息安全重点实验室开放课题项目(HZEB201009)
关键词 入侵检测 支持向量机 样本选择 凸包 intrusion detection support vector machine sample selection convex hull
  • 相关文献

参考文献23

  • 1NIST Special Publication 800-31 ,Intrusion detection system [S].
  • 2Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995,20 ( 3 ) :273-297.
  • 3Chen B, Johnson M. Protein local 3D structure prediction by Super Granule Support Vector Machines (Super GSVM) [J]. BMC Bioinformatics, 2009, 10 ( Suppl 11 ) : S15.
  • 4Xian G M ,Zeng B Q. An intelligent fault diagnosis method based on wavelet packer analysis and hybrid support vector machines [ J ]. Expert Systems with Applications, 2009,36(10) : 12131-12136.
  • 5Xu X B,Zhang D Y,Zhang X M. An efficient method for human face recognition using nonsubsampled eontourlet transform and support vector machine [ J ]. Optica Applicata,2009,39 ( 3 ) :601-615.
  • 6Yu J, Lee H, Kim M S,et al. Traffic flooding attack detection with SNMP MIB using SVM [J]. Computer Communications, 2008,31 ( 17 ) :4212-4219.
  • 7Song J ,Takakura H, Okabe Y ,et al. Unsupervised anomaly detection based on clustering and multiple one-class SVM [ J ]. IEICE Transactions on Communications,2009, E92B (6) : 1981-1990.
  • 8Huang H P,Yang F C, Wang M T, et al. Intrusion detection based on active networks [ J ]. Journal of Information Science and Engineering,2009,25 ( 3 ) :843-859.
  • 9张宝军,潘雪增,王界兵,平玲娣.基于多代理的混合式入侵检测系统模型[J].浙江大学学报(工学版),2009,43(6):987-993. 被引量:8
  • 10Dong J X, Krzyzak A, Suen C Y. Fast pattern selection algorithm for support vector classifiers : time complexity analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2005,27 ( 4 ) : 1008-1015.

二级参考文献15

  • 1HEADY R,LUGER G,MACCABE A,et al.The architecture of a network level intrusion detection system[R].New Mexico:Department of Computer Science,University of New Mexico,1990.
  • 2ANDERSON J P.Computer security threat monitoring and surveillance[R].Fort Washington,Pennsylvania:James P Anderson Co.,1980.
  • 3DENNING D E.An intrusion-detection model[J].IEEE Transaction on Software Engineering,1987,13(2):222-232.
  • 4LUNT T F,JAGANNATHAN R,LEE R,et al.Development and application of IDES:a real-time intrusion detection expert system[R].California,USA:SRI International, 1988.
  • 5HEBERLEIN L T,DIAS G V,LEVITT K N,et al.A network security monitor[C]∥ Proceedings of the IEEE Symposium on Research in Security and Privacy.Los Alamitos,California:IEEE Computer Society,1990:296-305.
  • 6SNAPP S R,BRENTANO J,DIAS G V,et al.DIDS (distributed intrusion detection system)-motivation,architecture,and an early prototype[C]∥ Proceedings of the 14th National Computer Security Conference.Baltimore,USA:NIST,1991:167-176.
  • 7SNAPP S R,SMAHA S E,GRANCE T,et al.The DIDS (distributed intrusion detection system) prototype[C]∥ Proceedings of the USENIX Summer 1992 Technical Conference.San Antonio,Texas:Usenix Association,1992:227-233.
  • 8CROSBIEM,SPAFFORD E.Defending a computer system using autonomous agonts[R].Indiana:COAST Laboratorg,Purdue University,West Lafayette,1994.
  • 9BALASUBRAMANIYAN J S,GARCIA-FERNANDEZ J O,LSACOFF D,et al.An architecture for intrusion detection using autonomous agents[R].West Lafayette:Purdue University,COAST Laboratory,1998.
  • 10SPAFFORD E H,ZAMBONI D.Intrusion Detection Using Autonomous Agents[J].Computer Networks,2000,34(4):547-570.

共引文献7

同被引文献44

  • 1鲍旭华,戴英侠,冯萍慧,朱鹏飞,魏军.基于入侵意图的复合攻击检测和预测算法[J].软件学报,2005,16(12):2132-2138. 被引量:40
  • 2俞研,黄皓.基于改进多目标遗传算法的入侵检测集成方法(英文)[J].软件学报,2007,18(6):1369-1378. 被引量:21
  • 3陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 4邓乃杨,田英杰.支持向量机一理论、算法与拓展[M].北京:科学出版社,2009.
  • 5张学工.模式识别[M].北京:清华大学出版社,2010.
  • 6Chen J Y, Yang D Y, Matsumoto N. A study of detector gener ation algorithms based on artificial immune in intrusion detection system[J]. WSEAS Trans. on Biology and Biomedicine,2007, 3(4) : 29 - 35.
  • 7Iren L F, Francisco M P, Francisco J G, et al. Intrusion detec-tion method using neural networks based on the reduction of characteristics[C]//Proc, of the lOth International Work-Con- ference on Aarti fical Neural Networks, 2009 : 1296 - 1303.
  • 8Xie L X, Zhu D, Yang H Y. Research on SVM based network intrusion detection elassifieation[C]// Proc. of the 6th Interna tional Conference on Fuzzy Systems and Knowledge Discovery, 2009: 362 - 366.
  • 9Yi Y, Wu J S, Xu W. Incremental SVM based on reserved set for network intrusion detection[J]. Expert Systems with Appli cations, 2011,38(6) : 7698 -7707.
  • 10Latifur K, Mamoun A, Bhavani T. A new intrusion detection system using support vector machines and hierarchical clustering [J]. The International Journal on Very Large Data Bases, 2007,16(4): 507-521.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部