期刊文献+

基于压缩感知的随机噪声成像雷达 被引量:18

Random Noise Imaging Radar Based on Compressed Sensing
下载PDF
导出
摘要 近年来提出的压缩感知(CS)理论指出可以从很少的采样点中以很大的概率准确重建原始的未知稀疏信号。该文将压缩感知与随机噪声雷达相结合,提出了基于压缩感知的随机噪声雷达,并给出了该雷达系统的基本原理框图,从理论上证明了基于压缩感知的随机噪声雷达的回波观测矩阵具有很好的等容性质,在目标场景稀疏或可以稀疏表示时,基于压缩感知的随机噪声雷达可以采集远小于常规随机噪声雷达成像所需的回波数据并能实现准确成像,最后通过仿真实验验证了该文的结论。 Recent theory of Compressed Sensing(CS) suggests that exact recovery of an unknown sparse signal can be achieved from few measurements with overwhelming probability.In this paper,CS technology is combined with random noise radar and the concept of random noise radar is proposed based on CS.The block diagram of the radar system is presented.Detailed analysis show that the sensing matrix of the random noise radar based on CS exerts good Restricted Isometry Property(RIP).Given a sparse or transform sparse target scene,the random nose radar based on CS can get high accuracy image by collecting far less amount of echo data than conventional noise radar does.Finally,in this paper,the conclusions are all demonstrated by simulation experiments.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第3期672-676,共5页 Journal of Electronics & Information Technology
基金 国家973计划项目(2010CB731905)资助课题
关键词 随机噪声雷达 成像雷达 压缩感知 稀疏重建 Random noise radar Imaging radar Compressed Sensing(CS) Sparse recovery
  • 相关文献

参考文献10

  • 1Narayanan R M, Xu Y, Hoffmeyer P D, and Curtis J O. Design, performance, and applications of a coherent ultra wide-band random noise radar [J]. Optical Engineering, 1998, 37(6): 1855-1869.
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289 1306.
  • 3Baraniuk R G and Steeghs P. Compressive radar imaging [C]. IEEE Radar Conference, Boston, MA, USA, Apr.17-20, 2007 128-133.
  • 4Herman M A and Strohmer T. High-resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 5Candes E J and Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 6Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors [J]. IEEETransactions on Image Processing, 2010, 19(1): 53-63.
  • 7Candes E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes rendus del Cademie des Sciences, Scriel, 2008, 346(9-10): 589-592.
  • 8Baraniuk R G, Davenport M A, DeVote R, and Wakin M B. A simple proof of the restricted isometry property for random matrices [J]. Constructive Appro:rimation, 2008, 28(3): 253-263.
  • 9Tropp J A, Laska J N, Duarte M F, Romberg J K, and Baraniuk R G. Beyond Nyquist: efficient sampling of sparse bandlimited signals [J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544.
  • 10Cetin M and Karl W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE Transactions on Image Processing, 2001, 10(4): 623-631.

同被引文献175

引证文献18

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部