期刊文献+

非均匀环境中的分布目标自适应检测 被引量:3

Adaptive Detection for Distributed Targets in Non-homogeneous Environments
下载PDF
导出
摘要 该文研究了非均匀环境中的分布目标和多点目标的检测。其中,假设辅数据协方差矩阵服从以主数据协方差矩阵为条件的逆Wishart分布,且均值与之成比例。首先给出主数据协方差矩阵、比例因子和目标幅度的最大似然估计(MLE),然后基于贝叶斯理论和广义似然比(GLRT)判决准则提出了一种检测器。当目标只存在单个距离门时,检测器和自适应相干估计器(ACE)一致;当目标跨越多个距离门时,检测器和广义自适应子空间检测器(GASD)一致。但不同在于ACE和GASD都是基于未知的确定干扰协方差矩阵的。另外,该检测器具有恒虚警率(CFAR)特性,并且有很好的检测性能。 Adaptive detection for distributed target and multiple point targets in non-homogeneous environments is studied in this paper,where it is assumed that the covariance matrix of the secondary data follows inverse Wishart distribution conditioned on that of the primary data with its expectation proportional to it.The Maximum Likelihood Estimator(MLE) of the covariance matrix of the primary data,scale factor and target amplitude are firstly given and subsequently a detector is proposed based on Bayesian theory and Generalized Likelihood Ratio Test(GLRT) decision rule.The detector is coincident with the Adaptive Coherence Estimator(ACE) when the target exists in one range bin and it is consistent with the Generalized Adaptive Subspace Detector(GASD) when target extends more than one range bin.However,what makes it different is that the ACE and GASD are both based on unknown deterministic covariance matrix.Additionally,the detector has Constant False Alarm Rate(CFAR) and bears good performance.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第3期696-700,共5页 Journal of Electronics & Information Technology
关键词 目标检测 分布目标 非均匀杂波 逆Wishart分布 Target detection Distributed targets Heterogeneous clutter Inverse Wishart distribution
  • 相关文献

参考文献12

  • 1Bandiera F, Orlando D, and Ricci G. CFAR detection of extended and multiple point-like targets without assignment of secondary data [J]. IEEE Signal Processing Letters, 2006, 13(4): 240-243.
  • 2Conte E, De Maio A, and Ricci G. GLRT-based adaptive detection algorithms for range-spread targets [J]. [EEE Transaction on Signal Processing, 2001, 49(7): 1336-1348.
  • 3Kelly E J. An adaptive algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(1): 115-127.
  • 4Shuai X, Kong L, and Yang J. Performance analysis of GLRT-based adaptive detector for distributed targets in compound-Gaussian clutter[J]. Signal Processing, 2010, 90(1): 16-23.
  • 5Roy L P and Kumar R V R. Performance deterioration of the matched filter detector in partially correlated texture based compound-Gaussian clutter environment [C]. IEEE Radar Conference, Pasadena, California, USA, May 2009: 1-5.
  • 6Roy L P and Kumar R V R. A GLRT detector in partially correlated texture based compound-Gaussian clutter [C]. 2010 National Conference on Communications, Chennai, January 2010: 1-5.
  • 7Scharf L L and McWhorter T. Adaptive matched subspace detectors and adaptive coherence estimators [C]. Proc. 30th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 1996: 1114-1117.
  • 8Wang P, Li H, and Himed B. A bayesian parametric test for multichannel adaptive signal detection in nonhomogeneous environments [J]. IEEE Signal Processing Letters, 2010, 17(4): 351-354.
  • 9Bidon S, Besson O, and Tourneret J Y. A bayesian approach to adaptive detection in nonhomogeneous environments[J]. IEEE Transaction on Signal Processing, 2008, 56(1): 205-217.
  • 10De Maio A, Farina A, and Foglia G. Adaptive radar detection: a Bayesian approach [C]. Proceedings of the 2007 IEEE International Conference on Radar, Waltham, MA, April 2007: 624-629.

同被引文献31

  • 1童健,文必洋,王颂.强海杂波背景下的舰船目标检测[J].武汉大学学报(理学版),2005,51(3):370-374. 被引量:11
  • 2张麟兮,许家栋,李萍,王少波.雷达恒虚警检测系统仿真[J].计算机仿真,2007,24(4):293-296. 被引量:7
  • 3Shang Xiu-qin and Song Hong-jun. Radar detection based on compound-Gaussian model with inverse gamma texture [J]. IET Radar, Sonar and Navigation, 2011, 5(3): 315-321.
  • 4Shuai X F, Kong L J, and Yang J Y. Performance analysis of GLRT-based adaptive detector for distributed targets in compound-Ganssian clutter [J]. Signal Processing, 2010, 90(1): 16-23.
  • 5Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775-779.
  • 6McWhorter L T and Scharf L L. Adlomaptive matched subspace detectors and adaptive coherence estimators [C]. Proceedings of 30th Asiar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 1996: 1114-1117.
  • 7Maio A De, Farina A, and Foglia G. Adaptive radar detection: a Bayesian approach [C]. Proceedings of the 2007 IEEE International Conference on Radar, Waltham, MA, April 2007: 624-629.
  • 8Bidon S, Besson O, and Tourneret J Y. The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments [J]. IEEE Signal Processing Letters, 2008, 15: 281-284.
  • 9Besson O, Tourneret J Y, and Bodon S. Knowledge-aided Bayesian detection in heterogeneous environments[J]. IEEE Signal Processing Letters, 2007, 14(5): 355-358.
  • 10Michels J H. Multichannel detection using the discrete-time model-based innovations approach [D]. [Ph.D. dissertation], Syracuse University, Syracuse, NY, May 1991.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部