摘要
对于网络仅含一个压控非线性元件,用基波平衡原理由输入导纳G=0,B=0求振荡频率ω和基波振幅U_m.如果有合理的(ω,U_m)∈R^2,则网络存在有周期振荡或混沌振荡.对于网络含有两个压控的非线性元件,可以用埃米特式计算进入双口网络的实功P和虚功Q,由输入功率P=0,Q=0求振荡频率ω和基波振幅U_m.如果存在有一组合理的(ω,U_m)∈R^2,则网络存在有周期振荡.如果存在有多于两组合理的(ω,U_m)∈R^2,则网络存在有混沌振荡.
Regarding network containing only a voltage-controlled nonlinear element, the oscillation frequency w and first-harmonic amplitude Um can be found from the equation (G, B) = (0, 0) by using the fundamental wave balance principle, where (G, B) represents the input admittance of control port. If there are reasonable (w,Um)∈R^2, network possess cycle or chaotic oscillation. Regarding the nework including two voltage-controlled nonlinear elements, the active power P and reactive power Q received by two-port netword can be calculated by hermitian forms. The oscillation frequency w and first-harmonic amplitude Um can be found from the equation (P, Q) = (0,0), where (P, Q) represents complex power entering the two-port network. If there is single reasonable(w,Um)∈R^2, network possess cycle oscillation. If there are ore than two reasonable(w,Um)∈R^2, network possess chaotic oscillation.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第5期172-179,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(60662001)
关键词
埃米特式
虚功功率
基波幅值
混沌
hermitian forms
reactive power
first-harmonic amplitude
chaos