摘要
一个图的全染色被称为点可区别的即对任意两个不同点的相关联元素所构成的色集合不同.其中所用的最少颜色数称为G的点可区别全色数.定义了一种排序方法:三角排序.利用该排序的结果证明了当n三6(mod8)和C_(n-1)~4/2+2<m≤C_n^4/2+2时,梯图L_m(?)P_m×P_2的点可区别全色数为n.
Abstract: A proper total coloring of a simple graph G is called vertex distinguishing if for any two distinct vertices u and v in G, the set of colors assigned to the elements incident to u differs from the set of colors incident to v. The minimal number of colors required for a vertex distinguishing total coloring of G is called the vertex distingguishing total coloring chromatic number. In a paper, we give a "triangle compositor", by the compositor, we proved that when n ≡ 6(mod8) and C^4n-1/2+2 〈 m 〈_ C^4n/2+2, vertex distinguishing total chromatic number of "ladder graphs" Lm. is n.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第5期226-233,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(11061017)
宁夏大学科学研究基金((E)ndzr09-15)
关键词
点可区别全染色
点可区别全色数
三角排序
梯图
vertex distingushing total coloring
vertex distingushing total chromatic number
triangle sequence
ladder graph