期刊文献+

梯图的点可区别全染色Ⅵ 被引量:1

Vertex-Distinguishing Total Coloring of Ladder Graphs(n≡6(mod8))Ⅵ
原文传递
导出
摘要 一个图的全染色被称为点可区别的即对任意两个不同点的相关联元素所构成的色集合不同.其中所用的最少颜色数称为G的点可区别全色数.定义了一种排序方法:三角排序.利用该排序的结果证明了当n三6(mod8)和C_(n-1)~4/2+2<m≤C_n^4/2+2时,梯图L_m(?)P_m×P_2的点可区别全色数为n. Abstract: A proper total coloring of a simple graph G is called vertex distinguishing if for any two distinct vertices u and v in G, the set of colors assigned to the elements incident to u differs from the set of colors incident to v. The minimal number of colors required for a vertex distinguishing total coloring of G is called the vertex distingguishing total coloring chromatic number. In a paper, we give a "triangle compositor", by the compositor, we proved that when n ≡ 6(mod8) and C^4n-1/2+2 〈 m 〈_ C^4n/2+2, vertex distinguishing total chromatic number of "ladder graphs" Lm. is n.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第5期226-233,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11061017) 宁夏大学科学研究基金((E)ndzr09-15)
关键词 点可区别全染色 点可区别全色数 三角排序 梯图 vertex distingushing total coloring vertex distingushing total chromatic number triangle sequence ladder graph
  • 相关文献

参考文献4

  • 1BEHZAD. Graphs and Their Chromatic Numbers [M]. Doctoral Thesis Michigan State University, 1965.
  • 2Zhongfu Zhang, Pengxiang Qiu, Baogen Xu, etc. Vertex-distinguishing total coloring of graphs[J]. Ars Combinatoria 2008(87): 33-45.
  • 3张忠辅,李敬文,陈祥恩,姚兵,王文杰,仇鹏翔.图的距离不大于β的点可区别的全染色[J].中国科学(A辑),2006,36(10):1119-1130. 被引量:72
  • 4Wang Zhiwen, Yan Lihong, Zhang Zhongfu. Vertex distinguishing equitable total chromatic number of join graph[J] Acta Mathematicae Applicatae Sinica, English Series, 2007, 23(3): 445-450.

二级参考文献15

  • 1张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 2张忠辅,王建方,王维凡,王流星.若干平面图的完备色数[J].中国科学(A辑),1993,23(4):363-368. 被引量:16
  • 3张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:96
  • 4Balister P N, Riordan O M, Schelp R H. Vertex-distinguishing edge colorings of graphs. J of Graph Theory, 2003, 42:95-109
  • 5Bazgan C, Harkat-Benhamdine A, Li H, et al. On the vertex-distinguishing edge colorings of grsphs. J of Combin Theory, 1999, 75:288-301
  • 6Burris A C, Schelp R H. Vertex-distinguishing proper edge-colorings. J of Graph Theory, 1997, 26:73-82
  • 7Zhang Z F, Liu L Z, Wang J F. Adjacent strong edge coloring of graphs. Applied Mathematics Letters,2002, 15:623-626
  • 8Hamed H. △ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number. J of Combinatorial Theory, Series B, 2005, 95:246-256
  • 9Li J W, Zhang Z F, Chen Xiang'en et al. A note on adjacent strong edge coloring of k(n,m), Acta Mathematicae Applicatae Sinica, 2006, 22(2): 273-276
  • 10Li J W, Yao B, Cheng H, et al. Adjacent vertex-distinguishing edge chromatic number of Cm V Kn. J of Lanzhou Univercity (Natural Sciences), 2005, 41(1): 96-98

共引文献71

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部