期刊文献+

Tr(x^(2^(n/2)+2^(n/2-1)+1))的二阶非线性度下界

The lower bound of the second order nonlinearity of Tr(x^(2^(n/2)+2^(n/2-1)+1))
下载PDF
导出
摘要 作为影响系统安全的重要因素,对称密码中的密码函数应具有较高的r阶非线性度。对于r>1,目前对r阶非线性度的研究主要根据布尔函数微商的非线性度与其二阶非线性度之间的关系来进行。对于正整数n≡2(mod 4),确定了一类布尔函数Tr(x^(2^(n/2)+2^(n/2-1)+1))的二阶非线性度下界。与相同变元数的两类已知布尔函数相比,研究的函数具有更紧的二阶非线性度下界。 The Boolean functions used in symmetric ciphers should have high r-th order nonlinearity,which was one of the most important factors in system security.Making use of the relationship between the nonlinearity of derivative and the second order nonlinearity of a Boolean function,the lower bound of the second order nonlinearity could be deter-mined.For a positive integer n≡2(mod 4),the lower bound of the second order nonlinearity of the Boolean function Tr(x^(2^(n/2)+2^(n/2-1)+1)) was given.Compared with two classes of Boolean functions with the same number of variables,the functions discussed had a tighter lower bound on the second order nonlinearity.
出处 《通信学报》 EI CSCD 北大核心 2011年第3期86-90,共5页 Journal on Communications
基金 国家自然科学基金资助项目(60973130) 湖北省自然科学基金资助项目(杰出青年人才)(2009CDA147)~~
关键词 布尔函数 二阶非线性度 WALSH谱 REED-MULLER码 Boolean function the second order nonlinearity Walsh spectrum Reed-Muller codes
  • 相关文献

参考文献16

  • 1MACWILLIANMS F, SLOANE N. The Theory of Error Correcting Codes[M]. Amsterdam: North-Holland Publishing Company, 1977.
  • 2CARLET C, MESNAGER S. Improving the upper bounds on the covering radii of binary Reed-Muller codes[J]. IEEE Trans Inform Theory, 2007, 53(1): 162-173.
  • 3KABATIANSKY G, TAVERNIER C. List decoding of second order reed-muller codes[A]. Proceedings of 8th International Symposium on Communication Theory and Applications[C]. Ambleside, UK, 2005.
  • 4DUMER I, KABATIANSKY G, TAVERNIER C. List decoding of reed-muller codes up to the Johnson bound with almost linear complexity[A]. Proceedings of ISIT[C]. Seattle, WA, 2006. 138-142.
  • 5FOURQUET R, TAVERNIER C. List decoding of second order reed-muller and its covering radius implications[A]. Proceedings of the WCC[C]. Versailles, France, 2007. 147-156.
  • 6FOURQUET R, TAVERNIER C. An improved list decoding algorithm for the second order Reed-Muller codes and its applications[J]. Des Codes Cryptography, 2008, 49(1): 323-340.
  • 7ELSHEH E, BEN A, HAMZ A, et al. On the nonlinearity profile of cryptographic Boolean functions[J]. IEEE Trans Inform Theory, 2008, 53(1): 1767-1770.
  • 8CARLET C. On the higher order nonlinearities of algebraic immune functions[A]. Advances in Cryptology-CRYPTO 2006[C]. LNCS Santa Barbara, CA, 2006. 584-601.
  • 9CARLET C, DALAI D, GUPTA K, et al. Algebraic immunity for cryptographically significant Boolean functions: analysis and construction[J]. IEEE Trans Inform Theory, 2006, 52(7): 3105-3121.
  • 10MESNAGER S. Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity[J]. IEEE Trans Inform Theory, 2008, 54(8): 3656-3662.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部