摘要
基于弹性力学中的应变能理论和卡式第二位移最小定理,推导出了利用余弦曲线轮廓设计的单轴平面微动关节在平面内3个自由度微运动中的柔度解析表达式。在此基础上将各方向柔度变化规律与目前广泛应用于柔性机构设计中的半圆弧曲线平面微动关节的对应规律进行比较,揭示了该类型微动关节在柔性机构设计中的一些有用性能,如柔度随关节尺寸变化较为稳定等。
Based on the strain energy theory and Castigliano's second displacement minimum theorem,the compliance analytical expression for the single-axis flexure hinges to carry out three degree-of-freedom's micro-motions in a plane by using the cosine curve profile design.On this basis,the comparison of compliance variation law in each direction with that of single-axis flexure hinges with semicircle profile which have been widely used since micro-motion manipulators has been carried out.As a result,some useful characteristics have been obtained in application of flexure hinges with cosine profiles for compliant mechanism's design,such as the more stability presents in the relationship of compliance coefficient to the joint dimensions.
出处
《机械设计》
CSCD
北大核心
2011年第3期44-47,共4页
Journal of Machine Design
基金
江西省自然科学基金资助项目(2008GZC0051)
江西省教育厅科研基金资助项目(GJJ08252)
关键词
余弦曲线
微动机器人
柔性机构
应变能理论
卡式位移定理
Cosine curve
micro-motion manipulator
compliant mechanism
strain energy theory
Castigliano's displacement theorem