期刊文献+

求解多输入多输出检测新算法——遗传粒子群优化 被引量:1

New genetic particle swarm optimization evolutionary algorithm for MIMO detecting system
下载PDF
导出
摘要 设计两种基于粒子群优化算法(PSO)和基于遗传算法(GA)的多输入多输出(MIMO)系统检测算法。提出一种新的融合GA和PSO进化机制的遗传粒子群进化(GPSO)算法,并将其应用于MIMO系统检测问题求解。新算法改善了初始化种群,并将每一代粒子划为精英粒子、次优粒子和糟糕粒子三部分,对这三种粒子分别采用极值扰动、PSO进化和淘汰策略以改善算法的全局和局部搜索能力,从而加快算法的寻优速率和收敛速度。仿真结果表明:与基于PSO和基于GA的检测算法相比,GPSO的检测算法能够很大程度减少种群规模和迭代次数。而与最优的最大似然译码算法相比,GPSO检测算法能够在计算复杂度和误码性能之间获得很好的折中。 Two MIMO detecting algorithms corresponding to particle swarm optimization (PSO)based and genetic algorithm (GA)based detecting algorithms are designed. A novel genetic particle swarm optimization (GPSO) evolutionary method is proposed and applied to address the MIMO detecting problem. The proposed algorithm starts from improving the initial population, and divide the entire population into three types; elite particles, better particles and worst particles. Three different strategies of optimum value permutation, PSO evolvement and elimination strategy are employed corresponding to these three type particles to improve the local and global search ability. Therefore, both the optimum searching ability and the convergence speed are accelerated. Simulation results reveal that GPSO-based detecting algorithm takes much less size and less iteration number when compared with the PSO-based and the GA-based detecting method. Besides, compared with optimal maximum likehood(ML) detecting method, the GPSO-based detecting al- gorithm can reach better balance between the BER performance and the computational complexity.
出处 《电波科学学报》 EI CSCD 北大核心 2011年第1期42-49,共8页 Chinese Journal of Radio Science
基金 国家自然科学基金(60702060) 高等学校学科创新引智计划(B08038) 国家重点实验室专项基金(ISN03080005) 国家重大专项:IMT-A中的增强MIMO技术研发(2009ZX03003-005)
关键词 粒子群优化 遗传算法 检测 复杂度 particle swarm optimization genetic algorithm detecting complexity
  • 相关文献

参考文献5

二级参考文献48

共引文献37

同被引文献14

  • 1许良凤,胡敏.基于并行进化规划的多用户检测器[J].电子测量与仪器学报,2007,21(4):108-111. 被引量:5
  • 2ASHRAFINIA S, NAEM M. A low complexity evolution- ary algorithm for multi-user MIMO detection [ C ]. Pro- ceedings of IEEE Symposium on Computational Intelli- gence in Muhicriteria Decision-Making, Paris, France, April,2011 : 8-13.
  • 3TAKEUCHI K, VEHKAPERA M. Large-system analysis of joint channel and data estimation for MIMO DS-CD- MA systems [ J ] . IEEE Transactions on Information The- ory,2012,58(3) : 1385-1412.
  • 4SOM P, CHOCKALINGAM A. Muhiuser detection in large-dimension muhicode MIMO-CDMA systems with higher-order modulation[ C]. 2011 Military Communica- tions Conference, USA ,2011:364-370.
  • 5FENG F B ,TSIA SH CH. Adaptive detectors for MIMO DS/CDMA communication systems [ J]. IEEE Transac- tions on Vehicular Technology, 2008, 57 ( 5 ):.3015-3027.
  • 6KECHRIOTIS G, MANOLAKOS E S. Hopfield neural network implementation of the optimal CDMA muhiuser detector [ J ]. IEEE Transactions on Neural Networks, 1996,7( 1 ) :131-141.
  • 7ISIK Y, TASPINAR N. Multiuser detection with neural network and PIC in CDMA systems for AWGN and Ray- leigh fading asynchronous channels [ J ]. Wireless Per- sonal Communications,2007,43 (4) : 1185-1194.
  • 8SOUJERI E A. DS-CDMA MAl-cancellation using hys- teretic Hopfield neural networks [ C ]. 2006 IEEE Elec- trotechnical Conference, Mediterranean,2006 : 660-663.
  • 9HUANG Y F, YIN D. Genetic-based multi-user detector for multi-carrier CDMA communication systems [ C ]. Proceedings of the l lth IEEE Singapore International Conference on Communication Systems, Guangzhou, Chi- na,2008 : 461-465.
  • 10ABRAO T, CIRIACO F, OLIVEIRA L D. GA, SA, and TS near-optimum muhiuser detectors for s/MIMO MC- CDMA systems[ C]. Fourth International Conference on Wireless Communication and Sensor Networks, India, 2008 : 173-178.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部