期刊文献+

Laplace平滑变换及其在人脸识别中的应用 被引量:3

Laplacian smoothing transform for face recognition
原文传递
导出
摘要 本文主要研究如何从最优化的角度出发,从图像中提取低频特征.首先,基于图像的局部梯度定义了一种图像频率,并基于这种定义,诱导出Laplace平滑变换(LST),将二维图像映射到一维的向量.然后,将LST与学习算法相结合,提出二步子空间学习算法.所提的基于LST的二步子空间方法,对于光照、表情、姿势具有鲁棒性.实验表明,在ORL,Yale和FERET人脸数据库上,基于LST的人脸识别算法,相对DCT,DWT和PCA等预处理算法,具有更小的识别误差. In this paper,we investigate how to extract the lowest frequency features from an image.A novel laplacian smoothing transform(LST) is proposed to transform an image into a sequence,by which low frequency features of an image can be easily extracted for a discriminant learning method for face recognition.Generally,the LST is able to be a efficient dimensionality reduction method for face recognition problems.Extensive experimental results show that the LST method performs better than other pre-processing methods,such as discrete cosine transform(DCT),principal component analysis(PCA) and discrete wavelet transform(DWT),on ORL,Yale and PIE face databases.Under the leave one out strategy,the best performance on the ORL and Yale face databases is 99.75% and 99.4%,however,in this paper,we improve both to 100% with a fast linear feature extraction method for the first time.
出处 《中国科学:信息科学》 CSCD 2011年第3期257-268,共12页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60673020 60875080) 国家高技术研究发展计划(批准号:2007AA01Z453)资助项目
关键词 Laplace平滑变换 人脸识别 主分量分析 余弦变换 小波变换 线性判别分析 Laplacian smoothing transform(LST) face recognition principal component analysis(PCA) discrete cosine transform(DCT) discrete wavelet transform(DWT) linear discriminant analysis(LDA)
  • 相关文献

参考文献22

  • 1Ziad M. Hafed,Martin D. Levine.Face Recognition Using the Discrete Cosine Transform[J]. International Journal of Computer Vision . 2001 (3)
  • 2Kwak N,,Choi C,Ahuja N.Face recognition using feature extraction based on independent component analysis. Proceedings of International Conference on Image Processing . 2002
  • 3R. Beveridge,D. Bolme,M. Teixerira.The CSU Face Identification Evaluation System Users Guide: Version 5.0. . 2003
  • 4Bai,Z.,Demmel,J.,Dongarra,J.,Ruhe,A.,van der,Vorst,H. Templates for the Solution of Algebraic Eigenvalue Problems . 2000
  • 5D. Zhou,X. Yang.Face recognition using enhanced fisher linear discriminant model with facial combined feature. PRICAI . 2004
  • 6D. Q. Dai,P. Yuen.Wavelet based discriminant analysis for face recognition. Applied Mathematics and Computation . 2006
  • 7Zhao W,Chellappa R,Phillips PJ,et al.Face Recognition: A Literature Survey. ACM Computing Surveys . 2003
  • 8Adini Y,Moses Y,Ullman S.Face recognition: the problem of compensating for changes in illumination direction. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997
  • 9Brunelli R,Poggio T.Face recognition: features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1993
  • 10Kirby M,Sirovich L.Application of the KL procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1990

同被引文献24

  • 1崔玉平,郑胜,刘永才.基于向量机的红外小目标检测技术研究[J].红外与激光工程,2005,34(6):696-702. 被引量:9
  • 2高西奇,周洪祥,何振亚.基于小波变换的主元分析人脸图象识别[J].东南大学学报(自然科学版),1996,26(2):137-141. 被引量:17
  • 3Zhao W, Chellappa P J R, Rosenfeld A. Face recognition: a literature survey[J]. ACM Comput Surv, 2003, 35: 399-458.
  • 4Adini Y, Moses Y, Ullman S. Face recognition: the problem of compensating for changes in illumination direction [J]. IEEE Trans Part Anal Mach lnteU, 1997, 19: 721-732.
  • 5Zhang Bailing, Zhang Haihong, Sam Shuzhi. Face recognition by applying wavelet subband representation and kernel associative memory [J]. IEEE Trans on Neural Networks, 2004, 15(1): 166-177.
  • 6Sang-Ki Kim, Youn Jung Park, Kar-AnnToh, et al. SVM- based feature extraction for face recognition [J]. Pattern Recognition, 2010, 43(8): 2873-2874.
  • 7Li Weihong, Liu Lijuan, Gong Weiguo. Multi-objective uniform design as a SVM model selection tool for face recognition [J]. Expert Systems with Applications, 2011, 38 (6): 6689-6695.
  • 8Ergun Gumus, Niyazi Kilic, Ahmet Sertbas, et al Evaluation of face recognition techniques using PCA wavelets and SVM [J]. Expert Systems with Applications 2010, 37(9): 6404-6406.
  • 9P Perona,J Malik. Scale-Space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence (S0 162-8828),1990,(07):629-639.
  • 10Catté F,Lions P L,Morel J M. Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM J Num Anal (S0036-1429),1992,(01):182-193.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部