期刊文献+

非负矩阵分解在高光谱图像解混中的应用探讨 被引量:7

Discussion of the NMF's Application for Hyperspectral Imagery Unmixing
下载PDF
导出
摘要 从线性混合模型与非负矩阵分解的定义出发,分析非负矩阵分解适用于高光谱图像解混的原因,总结近年来学者们提出的基于非负矩阵分解的光谱解混算法,并重点对SC-NMF、MVC-NMF、APS-NMF算法步骤进行介绍与分析,最后总结非负矩阵分解及其应用于混合像元分解所面临的问题。
出处 《测绘通报》 CSCD 北大核心 2011年第3期7-10,共4页 Bulletin of Surveying and Mapping
基金 矿山空间信息技术国家测绘局重点实验室(河南理工大学 河南省测绘局)开放基金资助项目(KLM200904)
  • 相关文献

参考文献9

  • 1PAATERO P, TAPPER U. Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization ofError Estimates of Data Values [J]. Environmetrics, 1994(5) :111-126.
  • 2LEE D D,SEUNG H S. Unsupervised Learning by Convex and Conic Coding [ J ]. Advances in Neural Information Processing Systems, 1997(9) :515-521.
  • 3LEE D D,SEUNG H S. Learning the Parts of Objects by Nonnegative Matrix Factorization [ J ]. Nature, 1999, 401 (10) ,788-791.
  • 4GILLIS N, GLINEUR F. Using Underapproximations for Sparse Nonnegative Matrix Factorization [ J ]. Pattern Recognition, 2010,43 (4) : 1676-1687.
  • 5MASALMAH Y M. Unsupervised Unmixing of Hyperspectral hnagery Using the Constrained Positive Matrix Factorization[ D]. Puero Rico: The University of PuertoRico Mayaguez Campus, 2007.
  • 6PARRA L C, SAJDA P, DU S. Recovery of Constituent Spectra Using Non-negative Matrix Factorization [ J ]. SPIE Proceedings, 2003,5207( 11 ) :321-331.
  • 7PAURA V P, PIPER J,PLEMMONS R J. Nonnegative Matrix Factorization for Spectral Data Analysis [ J ]. Linear Algebra and Applications, 2006,416 (7) :29-47.
  • 8MIAO L, QI H. Endmember Extraction from Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (3) :765-777.
  • 9ZYMNIS A, KIM S J, SKAF J, et al. Hyperspectral Image Unmixing via Alternating Projected Subgradients [C]//Proceeding of 41st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA: [s. n.], 2007.

同被引文献100

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部