期刊文献+

Fe_(81)Ga_(19)合金<001>取向单晶生长及磁致伸缩性能 被引量:6

<001>ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe_(81)Ga_(19)ALLOYS
原文传递
导出
摘要 采用悬浮区熔法,加入籽晶控制牛长取向,以4 mm/h的牛长速度,制备了轴向〈001〉择优取向的Fe_(81)Ga_(19)单晶.极图测试结果发现,采用偏离轴向〈001〉方向约5°的籽晶牛长得到的单晶,牛长始端和牛长未端轴向取向分别偏离〈001〉取向5°和4°,上下取向差仅为1°.另一单晶采用轴向〈001〉取向籽晶牛长得到,当施加60 MPa压力时,饱和磁致伸缩性能达到0.0324%.测试了〈100〉,〈110〉和〈111〉取向单晶的初始磁化曲线,利用初始磁化曲线,计算得出Fe_(81)Ga_(19)单晶的磁晶各向异性常数值K_1和K_2,分别为1.3×10~4和-2.6×10~4J/m^3. The Fe81Ga19 single crystals were grown in a floating zone melting furnace at a growth rate of 4 mm/h by using a seed crystal. A single crystal was grown by using the seed crystal oriented 5~ from the (001/ orientation. Pole figure tests were taken at different parts of the single crystal and showed that the start and end parts' axial orientations were 5° and 4° from the (001) orientation, respectively. Another single crystal was grown by using the seed crystal oriented (001) orientation. Magnetostrictive properties along the axis of the crystals A//were measured for the single crystal, and the saturated magnetostriction A// up to 0.0324% was achieved under the pre-stress of 60 MPa. Initial magnetization curves were measured in single crystals along 〈100〉, 〈110〉and 〈111〉 axis, respectively. From the magnetization curves, magnetocrystalline anisotropy constants of Fe81 Ga19 alloys were calculated, and the values of K1 and K2 were 1.3×10^4 and -2.6×10^4 J/m3 ,respectively..
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2011年第2期169-172,共4页 Acta Metallurgica Sinica
基金 国家自然基金资助50971008,50925101和50921003项目~~
关键词 Fe81Ga19单晶 〈001〉取向 磁致伸缩 磁晶各向异性 Fe81Ga19 single crystal, 〈001〉 orientation, magnetostriction, magnetocrystallineanisotropy
  • 相关文献

参考文献17

  • 1Clark A E, Hathaway K B, Wun–Foglea M, Restorff J B, Lograsso T A, Keppens V M, Petculescu G, Taylor R A. J Appl Phys, 2003; 93: 8621.
  • 2Datta S, Atulasimha J, Mudivarthi C, Flatau A B.J Magn Magn Mater, 2010; 322: 2135.
  • 3Kellogg R A, Russell A M, Lograsso T A, Flatau A B, Clark A E, Wun–Fogle M. Acta Mater, 2004; 52: 5043.
  • 4Kellogg R A, Flatau A B, Clark A E, Wun–Fogle M, Lograsso T A. J Appl Phys, 2002; 91: 7821.
  • 5Clark A E, Restorff J B, Wun–Fogle M, Lograsso T A, Schlagel D L. IEEE Trans Magn, 2000; 36: 3238.
  • 6Cullen J, Zhao P, Wuttiga M. J Appl Phys, 2007; 101: 123922.
  • 7Ruffoni M P, Pascarelli S, Gr¨ossinger R, Sato Turtelli R, Bormio–Nunes C, Pettifer R F. Phys Rev Lett, 2008; 101: 147202.
  • 8Mudivarthi C, Laver M, Cullen J, Flatau A B, Wuttig M. J Appl Phys, 2010; 107: 09A957.
  • 9Khachaturyan A G, Viehland D. Metall Mater Trans, 2007; 38A: 2308.
  • 10Khachaturyan A G, Viehland D. Metall Mater Trans, 2007; 38A: 2317.

同被引文献69

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部