期刊文献+

Cu/Nb纳米金属多层膜延性及断裂行为的尺寸效应 被引量:4

LENGTH SCALE DEPENDENT DUCTILITY AND FRACTURE BEHAVIOR OF Cu/Nb NANOSTRUCTURED METALLIC MULTILAYERS
原文传递
导出
摘要 通过单轴拉伸实验并结合原位电阻测量法系统研究了恒定调制比下调制波长(λ=10—250 nm)对聚酰亚胺基体上Cu/Nb纳米金属多层膜延性和断裂韧性的影响.微观分析表明,Cu/Nb的调制结构清晰,不存在明显的互混现象.实验结果表明,随着调制波长的减小,多层膜的延性和断裂韧性均呈现非单调演变趋势,在调制波长为50 nm左右出现峰值.这是由于随着层厚的变化,脆性Nb层内起始微裂纹扩展能力和延性Cu层抑制裂纹扩展能力这两个因素之间的相互竞争关系变化引起的.采用断裂力学理论对这种竞争关系及其引起的延性和断裂韧性非单调变化趋势进行了定性分析. By using uniaxial tensile test combining the in situ electrical resistance change method, the influence of modulation period with a wide range spanning from 10 to 250 nm on the ductility and fracture toughness of Cu/Nb nanostructured metallic multilayers on polyimide substrate was measured. The microstructural analysis revealed that the modulation structure of Cu/Nb metallic multilayers was clear and no intermixing between Cu and Nb was been found by using line scanning analysis. The experimental results indicated that both ductility and fracture toughness of the multilayer film exhibited a nonmonotonic change with decreasing modulation period, and reached maximum values at a critical modulation period of about 50 nm. This was attributed to the competing effect between the size of the microcracks initiated in the Nb layer and the role of the Cu layer in blocking crack propagation. This competing effect was qualitatively assessed on basis of fracture mechanics.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2011年第2期246-250,共5页 Acta Metallurgica Sinica
基金 国家重点基础研究规划项目2010CB631003 国家自然科学基金项目50971097资助~~
关键词 纳米多层膜 调制波长 延性 断裂韧性 nanostructured multilayers, modulation period, ductility, fracture toughness
  • 相关文献

参考文献18

  • 1Spearing S M. Acta Mater, 2000; 48: 179.
  • 2Suo Z G, Vlassak J, Wagner S. China Particuology, 2005; 3: 321.
  • 3Bakonyi I, P′eter L. Prog Mater Sci, 2010; 55(3): 107.
  • 4Was G S, Foecke T. Thin Solid Films, 1996; 286: 1.
  • 5Misra A, Krug H. Adv Eng Mater, 2001; 3(4): 217.
  • 6Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817.
  • 7Phillips M A, Clemens B M, Nix W D. Acta Mater, 2003; 51: 3171.
  • 8Huang H B, Spaepen F. Acta Mater, 2000; 48: 3261.
  • 9Mara N A, Bhattacharyya D, Hoagland R G, Misra A. Scr Mater, 2008; 58: 874.
  • 10Niu R M, Liu G, Wang C, Zhang G, Ding X D. Appl Phys Lett, 2007; 90: 161907.

同被引文献62

  • 1帅歌旺,张萌.高强度、高导电铜合金及铜基复合材料研究进展[J].特种铸造及有色合金,2005,25(9):534-537. 被引量:53
  • 2马大衍,马胜利,徐可为,刘维民,S.Veprek.纳米复合Ti-B-N薄膜的结构和摩擦学性能[J].稀有金属材料与工程,2005,34(10):1597-1600. 被引量:4
  • 3向文永,陈小祝,匡同春,成晓玲,钟秋生,刘国洪.集成电路用引线框架材料的研究现状与趋势[J].材料导报,2006,20(3):122-125. 被引量:44
  • 4杜会静,田永君.超硬纳米多层膜致硬机理研究[J].无机材料学报,2006,21(4):769-775. 被引量:22
  • 5Tilly L, Lecouturier F, Coffe G, et al. Ultra high strength nanofilamentary conductors:The way to reach extreme pro- perties[J]. Physica B, 2001,294-295 : 648.
  • 6Singleton J, et al. The national high magnetic field laborato- ry pulse&field facility at los alamos national laboratory[J]. Physica B, 2004,346-347 : 641.
  • 7Leeouturiera F, et al. Perspectives for Cu/SS macrocompo- site and Cu/X nanofilamentary conductors used in non-de- structive high-field pUlsed magnets under cryogenic condi- tions [J]. Physiea B, 2004,346-347 : 582.
  • 8Vidal V, et al. Effects of size and geometry on the plasticity of high-strength copper/tantalum nanofilamentary conduc- tors obtained by severe plastic deformation [J]. Acta Ma- ter, 2006,54 : 1063.
  • 9Vidal V, et al. Cu nanowhiskers embedded in Nb nanotubes inside a multiscale Cu matrix: The way to reach extreme me- chanical properties in high strength conductors [J]. Scr Ma- ter, 2007,57:245.
  • 10Shikov A, Pantsyrnyi V, Vorobieva A. High strength, high conductivity CuNb based conductors with nanoscaled micro- structure[J]. Physica C, 2001,354 : 410.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部