摘要
对传统的线性预测算法进行改进,通过粗差剔除、初始点选取、特殊地形分析及光滑度检验等步骤提高了滤波精度。利用ISPRS发布的6组标准测试数据与原方法进行实验比较,结果证明,改进后的算法提高了滤波总精度以及地面点分类精度。
A progressive linear prediction filtering algorithm is proposed for extracting DEM from LiDAR data. Some processes are inserted in the ordinary linear prediction algorithm, such as gross error detection, initial value selection, landform analysis, and smoothness detection. The authors used this algorithm to process 6 datasets published by ISPRS as standard filtering test data. The results show that the improvement in the traditional methods can increase the precision of DEM.
出处
《国土资源遥感》
CSCD
2011年第1期52-56,共5页
Remote Sensing for Land & Resources
基金
国家"863"计划项目(编号:2006AA06A208)
国家自然科学基金项目(编号:40671159)共同资助
关键词
LIDAR
滤波
线性预测
粗差
分块
LiDAR
Filtering
Linear prediction
Outlier
Partitioning