期刊文献+

叶立德活性聚合制备基于聚亚甲基的大分子单体 被引量:3

Synthesis of Polymethylene-based Macromonomer by Living Polymerization of Ylides
原文传递
导出
摘要 利用叶立德活性聚合方法制备了两种基于聚亚甲基的大分子单体.其中一种是以叶立德活性聚合制备的主链链端含有羟基的聚亚甲基(PM-OH)为原料,通过链端羟基的基团转换,得到链端含有甲基丙烯酸酯基的大分子单体.另一种则是以硼烷-四氢呋喃(BH3-THF)和二乙烯基苯反应得到的三烷基硼中间体为催化剂和引发剂,然后进行叶立德活性聚合,再经过二水合氧化三甲胺(TAO)的氧化,最终得到基于聚亚甲基的一端含有羟基另一端含有苯乙烯基的大分子单体.通过高温核磁氢谱、傅立叶红外光谱和高温凝胶色谱法表征了这两种大分子单体的链结构和分子量及其分布. Two kinds of polymethylene-based macromonomers were prepared by living polymerization of ylides. One macromonomer PM-methacrylate was obtained by the transformations of hydroxyl group at the chain end of polymethylene obtained by living polymerization of ylides. The other macromonomer PM-styryl was synthesized via living polymerization of ylides which initiated by organoborane which was prepared by hydroboration of divinylbenzene, and after the oxidation by trimethylamine-N-oxide dehydrate (TAO), a-p-vinylphenyl-co-hydroxypolymethylene were obtained. The chain structure, molecular weight and its distribution of the two macromonomers were investigated by high temperature 1H NMR spectra, FT-IR and high temperature GPC.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2011年第5期591-595,共5页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.20604032 21074146) 中国科学院上海有机化学研究所创新课题组副研择优支持资助项目
关键词 叶立德活性聚合 聚烯烃功能化 大分子单体 living polymerization of ylides functionalization of polyolefin macromonomer
  • 相关文献

参考文献3

二级参考文献167

共引文献26

同被引文献93

  • 1吕英莹,胡友良.聚烯烃的功能化改性研究进展[J].化工进展,2005,24(8):825-832. 被引量:9
  • 2Kawashara N, Saito J, Matsuo S, et al. Based on polyolefins --Syntheses, structures, and properties[J]. Adv. Polym. Sci., 2008, 217: 79-119.
  • 3Pinchuk L, Wilson G J, Barry J J, et al.Medical applications of poly(styrene-block-isobutylene-block-styrene) ( "SIBS" )[ J]. Biomaterial , 2008, 29: 448-460.
  • 4Hadjichristidis N, Pispas S, Floudas G A. In Block Bopolymers: Synthetic Strategies, Physical Properities, and Applications[M]. New York: John Wiley&Sons, 2002: 383-460.
  • 5Godoy-Lopez R, D'Agosto F, Boisson C. Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions[J]. Prog. Polym. Sci.,2007, 32: 419-454.
  • 6Favier A, Charreyre M T. Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process[J]. Macromol. RapidCommun., 2006, 27: 653-692.
  • 7Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process[J]. Macromolecules, 1998, 31 : 5559-5562.
  • 8Barner-Kowollik C, Sebastien P. The future of reversible addition fragmentation chain transfer polymerization[J]. J. Polym. Sci, Part A: Polym. Chem., 2008, 46: 5715-5723.
  • 9Boyer C, Bulmus V, Davis T P, et al. Bioapplications of RAFT polymerization[J].Chem. Rev., 2009, 109: 5402-5436.
  • 10Smith A E, Xu X W, McCormick C L. Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization[J]. Prog. Polym. Sci., 2010, 35: 45-93.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部