期刊文献+

基于稀疏表示的多雷达信号二维融合处理 被引量:2

Multi-radar Signal Two-dimensional Fusion Processing Based on Sparse Representation
原文传递
导出
摘要 多雷达信号融合通过对多视角和多频带雷达信号进行相干融合,可以提高图像的距离和方位向分辨率。为了克服基于谱估计的多雷达信号融合方法稳健性严重依赖于散射点个数估计精度和二维极点配对精度的问题,在深入研究逆合成孔径雷达(ISAR)信号的基础上,构造了多雷达信号二维融合的线性表示模型,将融合处理转化为一个信号表示问题;充分挖掘ISAR信号在傅里叶域的稀疏特性,提出了基于信号稀疏表示的多雷达信号融合方法。研究表明:基于信号稀疏表示的多雷达信号二维融合处理的参数估计精度优于谱估计方法,且运算效率略低于谱估计方法,但是参数估计性能受信号稀疏度的影响。 Using multi-radar signal fusion to fuse multi-angle and multi-band signals can improve the range and cross-range resolution of images.To overcome the limitation of multi-radar signal fusion based on spectral estimation,whose solidity depends heavily on the estimated accuracy of the number of scattering centers and the matching accuracy of two-dimensional poles,a linear representation model of multi-radar signal fusion is constructed.Then the sparsity of inverse synthetic aperture radar(ISAR) signal in the Fourier domain is excavated,and a new multi-radar signal fusion method based on signal sparse representation is proposed in this paper.From the analysis and simulation,it can be seen that the accuracy of parameters estimation based on signal sparse representation is better than that from the spectral estimation,while the operation efficiency of the new method is a little lower.But the performance of parameters estimation of the new method is affected by signal sparisty.
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第3期515-521,共7页 Acta Aeronautica et Astronautica Sinica
关键词 多雷达信号 信息融合 分辨率 信号稀疏表示 散射点 个数估计 multi-radar signal information fusion resolution signal sparse representation scattering center number estimation
  • 相关文献

参考文献13

  • 1Cuomo K M, Piu J E, Mayhan J T. Ultrawide band coherent processing[J]. IEEE Transactions on Antennas and Propagation, I999, 47(6): 1094-1107.
  • 2Vann L D, Cuomo K M. Multisensor fusion processing for enhanced radar imaging[R]. ADA376545, 2000. Morre T G, Zuerndorfer B W. Enhanced imagery using spectral estimation based techniques[J]. Lincoln I.abora tory juurnal, 1997, 10(2):171-186.
  • 3Morre T G, Zuerndorfer B W. Enhanced imagery using spectral estimation based techniques[J]. Lincoln I.abora tory journal, 1997, 10(2): 171-186.
  • 4Piou j E, Cuomo K M, Mayhan J T. A state space tech nique for uhrawide bandwidth coherent proeessing[R]. ADA336105, 1999.
  • 5Naishadham IK, Piou J E. State space spectral estimation of characteristic electromagnetic responses in wideband da ta[J]. IEEE Antennas and Wireless Propagation Letters, 2005(4) : 406-409.
  • 6王成,胡卫东,郁文贤.基于非平稳时间序列处理的雷达信号融合[J].信号处理,2005,21(4):338-343. 被引量:9
  • 7Mallat SG, Zhang Z F. Matching pursuits with time frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 8Chen S S. Basis pursuit[D]. Palo Alto: Department of Statistics, Stanford University, 1995.
  • 9Chen S S, Donoho D L Application of bases pursuit in spectrum estimation[C]//IEEE International Conferenceon Acoustics, Speech and Siagnal Processing. 1998, 3:1865-1868.
  • 10Donoho D L, Elad M. Maximal sparsity representation via L1 minimization[EB/OL], http: // www stal. stanford. edu/-donoho/reports/, 2002.

二级参考文献10

  • 1Mark R. McClure, Lawrence Carin. Matching pursuits with a wave-based dictionary[J]. IEEE Trans on Signal Processing,1997, 45(12):2912-2927.
  • 2Michael J. Gerry, Lee C. Potter, Inder J. Gupta. A parametric model for synthetic aperture radar measurements[J]. IEEE Trans on Antennas and Propagation, 1999,47(7):1179-1188.
  • 3Peter J. Brockwell. Non-Stationary and Seasonal Time Series (Chap 6) [EB/OL]. http://www.st at. colostate.edu/-pjbrock/st525/chap6, pdf. 2003-10-15/2004-1-18.
  • 4Kie B. Eom. Time-varying autoregressive modeling of HRR radar signatures[J]. IEEE Trans on Aerospace and Electronic Systems, 1999, 35(3):974-988.
  • 5Chukiet Sodsri. Time-varying autoregressive modeling for nonstationary acoustic signal and its frequency analysis[D]. PhD thesis of the Pennsylvania state university, the graduate school, graduate program in acoustics, December, 2003.
  • 6D.M. Wilkes, G. Liang, J.A. Cadzow. ARMA model order determination and MDL: a new perspective[J].Proceedings of the IEEE International Conf. on Acoustics,Speech, and Signal Processing (ICASSP), Pages:525-528, vol.5, San Francisco, March, 1992.
  • 7王成 胡卫东 郁文贤.多带雷达信号融合中的幅相补偿参数估计【J】[J].电子与信息学报,2004,26(1):475-480.
  • 8Michael. E Hurst, Raj Mittra. Scattering center analysis via Prony's method[J]. IEEE Trans on Antennas and Propagation, 1987, 35(8):986-988.
  • 9Lee C.Poter, Da-Ming Chiang, Rob Carriere, Michael J.Gerry. A GTD-based parametric model for radar scattering[J]. IEEE Trans on Antennas and Propagation,1995, 43(10): 1058-1067.
  • 10Kevin M. Cuomo, Jean E. Piou, Joseph T. Mayhan.Ultrawide-Band Coherent Processing[J]. IEEE Trans on Antennas and Propagation, 1999, 47(6): 1094-1107.

共引文献8

同被引文献26

  • 1黄璟,宁超,肖志河.一种新的多波段雷达相参处理方法[J].微波学报,2012,28(S3):64-67. 被引量:2
  • 2杜小勇,胡卫东,郁文贤.基于稀疏成份分析的逆合成孔径雷达成像技术[J].电子学报,2006,34(3):491-495. 被引量:9
  • 3Zhou J X, Shi Z G, Cheng X, et al. Automatic target rec- ognition of SAR images based on global scattering center model[J]. IEEE Transaction on Geoseienee and Remote Sensing, 2011, 49(10): 3713-3729.
  • 4Jon G, Cui J J, Mike B. HRR automatic target recogni- tion from superresolution scattering center features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 54(4) : 1512-1524.
  • 5Jouny I. Scattering features for target recognition using fi- nite rate of innovation model [C]//IEEE International Symposium on Antennas and Propagation (APSURSI2012), 2012:1-2.
  • 6Andre Q, Emanuel R, Totir F C, et al. Some radar im- agery results using superresolution techniques[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(5) : :1230-1244.
  • 7Richard R, Thomas K. ESPRIT-estimation of signal pa- rameters via rotational invariance techniques[J]. IEEE Transaction on ASSP, 1989, 37(7): 984-995.
  • 8Lin J D, Fang W H, Wu K H. FSF subspace-based algo- rithm for joint DOA-FOA estimation[C]//IEEE Interna- tional Conference on Acoustics, Speech and Siganl Pro- cessing(ICASSP2004), 2004, 2: 11-157-160.
  • 9Lin J D, Fang W H, Wang Y Y, et al. FSF-MUSIC for joint DOA and frequency estimation[J]. IEEE Transac- tions on Signal Processing, 2006, 54(12): 4529-4542.
  • 10LinCH, FangWH, LinJD, etal. A fast algorithm for joint two-dimensional direction of arrival and frequency es- timation via hierarchical space-time decomposition [J]. Signal Processing, 2010, 90(1): 207-216.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部