期刊文献+

基于显露模式的出生缺陷判别算法 被引量:1

Birth defects detection algorithm based on emerging patterns
下载PDF
导出
摘要 出生缺陷是目前世界各国关注的公共卫生问题,采用数据挖掘技术提高出生缺陷的诊断水平是当前数字医学的热点研究方向。为此,提出了适合出生缺陷特征提取的两种显露模式:有缺陷相比于无缺陷的显露模式和无缺陷相比于有缺陷的显露模式。将新模式与决策树C4.5算法结合,实现了基于显露模式的出生缺陷判别(BDD-EP)算法。实验结果表明BDD-EP算法判别准确率高达90.1%,判别正常类的F度量值为93.9%,判别缺陷类的F度量值为74.1%,均高于其他几种著名的分类算法的判别效果。 The problem of birth defects is one of the most important public health problems in the world,and the application of data mining method to improve the diagnostic accuracy for birth defects is a hot medical research issue.The authors proposed two emerging patterns for birth defects feature extraction: the defection contrast to normal and the normal contrast to defection.The Birth Defects Detection based on Emerging Patterns(BDD-EP) algorithm was implemented through combining the proposed patterns with C4.5 decision tree.The extensive experimental results show that the detection accuracy of BDD-EP is as high as 90.1%,the F-measure of normal samples is 93.9%,and the F-measure of defect samples is 74.1%.Compared with other famous classical classification algorithms,BDD-EP algorithm can get better results.
出处 《计算机应用》 CSCD 北大核心 2011年第4期885-889,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60773169) 国家"十一五"科技支撑计划项目(2006BAI05A01) 高等学校博士学科点专项科研基金资助项目(20100181120029) 四川大学青年教师科研启动基金资助项目(2009SCU11030)
关键词 显露模式 决策树 特征提取 出生缺陷 Emerging Pattern(EP) decision tree feature extraction birth defect
  • 相关文献

参考文献20

  • 1钟南.浅谈我国出生缺陷研究的现况与展望.中国优生优育,2007,13(1):10-11.
  • 2CARMONA R H. The global challenges of birth detects and disabilities [ J ]. Lancet, 2005, 366(9492) : 1142 - 1144.
  • 3EPTEIN C J. Genetic disorders and birth defects [ M ] // RUDOLPH A M, ltOFFMAN J, RUDOLPH C D. Rudolph's Pediatrics, 19th ed. Norwalk, CT: Appleton & Lange, 1991:265-269.
  • 4DONG G Z, LI J Y. Efficient mining of emerging patterns: Discovering trends and differences [ C ]// Proceedings of the 5th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. San Diego: ACM, 1999:43-52.
  • 5LI J, LIU G, WONG L. Mining statistically important equivalence classes and delta-discriminative emerging patterns [ C ]// Proceedings of the 13th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. San Jose: ACM, 2007:430-439.
  • 6DONG G Z, ZHANG X Z, WONG L, et al. CAEP: Classification by aggregating emerging patterns [ C ]// Proceedings of the 1999 International Conference on Discovery Science, LNCS 1721. Berlin: Springer, 1999:30-42.
  • 7LI J, DONG G, RAMAMOHANARAO K, et al. DEEP: A new instance-based lazy discovery and classification system [ J ]. Machine Learning, 2004, 5d(2) : 99 - 124.
  • 8LI J, DONG G, RAMAMOHANARAO K. Making use of the most expressive jumping emerging patterns for classification [ C ]// Proceedings of the 4th Pacific-Asia Conference on Knowledge Discover and Data Mining, LNCS 1805. Berlin: Springer, 2000:220-232.
  • 9李曼 范明.一种新颖的基于最有效的跳跃撼露模式的分类法.汁算机科学,2002,29(8):73-76.
  • 10LI J, LIU H, DOWNING J R, et al. Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients [J]. Bioinformatics, 2003, 19(1) : 71 - 78.

二级参考文献18

  • 1朱玉全,陈耿,杨鹤标.正负关联规则挖掘算法研究[J].计算机科学,2006,33(3):188-190. 被引量:10
  • 2LAKSHMANAN V S, RUSSAKOVSKY A, SASHIKANTH V. What-if OLAP queries with changing dimensions[ C]// Proceedings of the 2008 IEEE 24th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 2008:1334 - 1336.
  • 3Gene Therapy[ EB/OL]. [ 2009 - 04 - 15]. http://www, oral. gov/ sci/techresources/Human_Genome/medicine/genetherapy, shtml.
  • 4Gene Therapy for Cancer[ EB/OL]. [ 2009 -04 -20]. http:// www. csupomona, edu/- isge/Gene Therapy'04. ppt.
  • 5WITTEN I H, FRANK E. Data mining: Practical machine learning tools and techniques [ M]. 2nd ed. San Francisco : Morgan Kaufmann, 2005.
  • 6YU LEI, LIU HUAN. Feature selection for high-dimensional data: A fast correlation-based filter solution[ EB/OL]. [ 2009 - 04 - 20]. http://www, hpl. hp. com/conferences/icml2003/papers/144, pdf.
  • 7ZHAO ZHENG, LIU HUAN. Searching for interacting features [ EB/OL]. [ 2009 - 04 - 20]. http://www, public, asu. edu/- huanliu/papers/ijcai07, pdf.
  • 8CAI Y D, CLUSTTER D, PAPE G, et al. MAIDS: Mining alarming incidents from data streams[ EB/OL] . [ 2009 - 04 - 25]. http://algdocs, ncsa. uiuc. edu/PB-20040613-1, pdf.
  • 9CURRY C, GROSSMAN R, LOCKIE D, et al. Detecting changes in large data sets of payment card data: A case study[ C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining. New York: ACM, 2007: 1018 - 1022.
  • 10IHLER A, HUTCHINS J, SMYTH P. Adaptive event detection with time-varying poisson process[ C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York: ACM, 2006:207-216.

共引文献23

同被引文献34

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部