期刊文献+

t分布下基于核函数的最大后验概率分类方法 被引量:1

Maximum a posteriori classification method based on kernel method under t distribution
下载PDF
导出
摘要 针对多元正态分布不能适应样本数据严重拖尾现象的问题,提出t分布下的多分类识别方法。利用核技术将样本数据扩展到高维特征空间中,采用贝叶斯分类器得到最大后验概率,进而得到分类结果。由于可以调整t分布中的自由度参数v,因此更容易满足数据样本的不同拖尾情况,具有较好的稳健性。在5个国际标准UCI数据集和3个人脸数据集上进行了大量实验,实验结果表明,该方法有较好的分类效果,具有可行性。 In order to solve the problem of multivariate normal distribution failing to comply with the distribution of sample data when it has a serious tailing phenomenon,a multiclass classification method under t distribution was proposed.Sample data were extended to the high dimensional feature space by kernel method and Maximum A Posteriori(MAP) was obtained by Bayesian classifier,and then classification result could be gotten.Because it has another degree of freedom parameter v in multivariate t distribution,it can more easily capture the complexity of the sample data,and enjoys better robustness.A large number of experiments have been done on the five international standard UCI data sets and three facial image data sets,and the experimental results show that the method achieves better classification and is feasible.
出处 《计算机应用》 CSCD 北大核心 2011年第4期1079-1083,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60704047 9082002)
关键词 核方法 多元T分布 多元正态分布 贝叶斯分类 人脸识别 kernel method multivariate t distribution multivariate normal distribution Bayesian classification face recognition
  • 相关文献

参考文献11

  • 1石志广,周剑雄,赵宏钟,付强.长拖尾K分布杂波下雷达目标散射中心参数的稳健估计[J].电子与信息学报,2007,29(12):2848-2852. 被引量:1
  • 2PEEL D, MCLACHLAN G J. Robust mixture modeling using the tdistribution [J]. Statistics and Computing, 2000, 10(4): 339-348.
  • 3HOWLAND P, WANG J L, PARK It. Solving the small sample size problem in face recognition using generalized discriminant analysis [J]. Pattern recognition, 2006, 39(2): 277-287.
  • 4XU Z L, HUANG K ZH, ZHU J K, et al. A novel kernel-based maximum a posteriori classification method [ J ]. Neural Networks, 2009, 22(7): 977-987.
  • 5JOHN S T, CRISTIANINI N. Kernel methods for pattern analysis [ M ]. New York: Cambridge University Press, 2004.
  • 6LIU C H, RUBIN D B. ML estimation of the t distribution using EM and its extensions, ECM and ECME [ J ]. Statistica Sinica, 1995, 5 (1): 19-39.
  • 7FRIEDMAN J tI. Regularized discriminant analysis [ J ]. Journal of American Statistics Association, 1989, 84(405) : 165 - 175.
  • 8RUIZ A, LOPEZ-DE-TERUEL P E. Nonlinear kernel-based statistical pattern analysis [ J ]. 1EEE Transactions on NeurM Networks, 2001, 12(1): 16-32.
  • 9JOLLIFFE I T . Principal component analysis [ M ] . New York : Springer-Verlag, 1986.
  • 10SCHOI.KOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998, 10(5): 1299-1319.

二级参考文献10

  • 1Marier L J. Correlated K-distributed clutter generation for radar detection and track. IEEE Trans. on AES, 1995, 31(2): 568-580.
  • 2Lee C P, et al.. A GTD-based parametric model for radar scattering. IEEE Trans. on AES, 1995, 43(10): 1058-1067.
  • 3Zhang Xian-Da and Liang Ying-Chang. Prefiltering-based ESPRIT for estimating sinusoidal parameters in non-Gaussian ARMA noise. IEEE Trans. on SP, 1995, 43(1): 349-353.
  • 4Wu Yuehua and Tam Kwok-Wai. M-estimation in exponential signal models. IEEE Trans. on SP, 2001, 49(2): 373-380.
  • 5Baker C J. K-distributed coherent sea clutter. IEE Proc., 1991, 138(2): 89-92.
  • 6Oh Sang Geun and Kashyap L R. A robust approach for high resolution frequency estimation. IEEE Trans. on SP, 1991, 39(3): 627-643.
  • 7Huber P J. Robust Statistics. New York: Wiley, 1981.
  • 8Hansen R R and Chellappa R. Two-dimensional robust spectrum estimation. IEEE Trans. on ASPP, 1988, 16(7): 1051-1066.
  • 9Lagarias J C, Reeds J A, and Wright M H, et al.. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization, 1998, 9(1): 112-141.
  • 10Holland P W and Welsch R E. Robust regression using iteratively reweighted least squares. Commun. Stat.-Theory Methods, 1977, A(6): 466-480.

同被引文献20

  • 1吕冰,王士同.基于核的多元区别分析算法的特征抽取及其在人脸识别中的应用[J].计算机应用,2006,26(11):2781-2783. 被引量:2
  • 2TURK M, PENTLAND A. Eigenfaces for recognition [J]. J Cognitive Neuroscience, 1991, 3 (1) :71-86.
  • 3BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs fisherfaces : recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) :711-720.
  • 4MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels [C]//IEEE Neural Networks for Signal Processing Workshop, Wisconsin. Madison : IEEE Press, 1999 : 41-48.
  • 5SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319.
  • 6HAMSICI ONUR C. Rotation invariant kemels and their application to shape analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 ( 11 ) : 1985-1999.
  • 7DRYDEN I L, MARDIA K V. Statistical shape analysis[M]. NewYork:John Wiley &Sons, 1998.
  • 8VEERARAGHAVAN A, ROY-CHOWDHURY R K, CHELLAPPA R. Matching shape sequences in video with applications in human movement analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (12) :1896-1909.
  • 9TORRE la F D, COLLET A, COHN JF, et al. Filtered component analysis to increase robustness to local minima in appearance models [C]// IEEE Conf Computer Vision and Pattern Recognition. Minneapolis: IEEE Press, 2007:1-8.
  • 10COPPERSMITH D, WINOGRAD S. Matrix multiplication via arithmetic progressions [ J ]. Symbolic Computation, 1990 ( 9 ) : 251-280.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部