期刊文献+

求解高维多模优化问题的正交小生境自适应差分演化算法 被引量:10

Self-adaptive differential evolution algorithm based on orthogonal and niche elite for high-dimensional multi-modal optimization
下载PDF
导出
摘要 针对传统优化算法在求解高维多模态优化问题时存在收敛速度慢、求解精度低的问题,提出一种基于正交设计与小生境精英策略的自适应差分进化算法ONDE。首先利用正交表产生初始种群,然后采用小生境精英策略来产生小生境种群(NP),并用小生境种群更新精英个体;接着应用拥挤裁剪避免种群陷入局部搜索,最后利用自适应差分变异算子改进了差分进化(DE)算法。通过对7个benchmark函数仿真验证,实验结果表明,算法在收敛速度、求解精度和稳定性方面都有较大优势。 Traditional Differential Evolution(DE) algorithm has shortcomings,such as being trapped into local optimum easily,low convergence speed and solution precision.An Orthogonal Niche Differential Evolution(ONDE) algorithm was proposed to resolve these problems.Firstly,the orthogonal table was used to generate initial population;secondly,the niche elite selection strategy was utilized to produce Niche Population(NP),and update Elite Population(EP) with niche population;thirdly,trapping into local search was prevented by crowded cutting;finally,differential evolution operator was improved by using self-adaptive mutation operators.Simulations on seven benchmark functions were used to test the proposed algorithm.The experimental results illustrate that ONDE algorithm has some advantages in convergence velocity,solution precision and stability.
出处 《计算机应用》 CSCD 北大核心 2011年第4期1094-1098,共5页 journal of Computer Applications
基金 国家863计划项目(2008AA01A303) 陕西省教育厅科研基金资助项目(2010JK466) 陕西理工学院青年科研基金资助项目(SLG0818)
关键词 高维多模态 正交设计 小生境识别 自适应 差分演化算法 high-dimensional multi-modal orthogonal design niche recognition self-adapting Differential Evolution(DE) algorithm
  • 相关文献

参考文献11

  • 1贺毅朝,王熙照,刘坤起,王彦祺.差分演化的收敛性分析与算法改进[J].软件学报,2010,21(5):875-885. 被引量:68
  • 2NOMAN N, IBA H. Enhancing differential evolution performance with local search for high dimensional function optimization [ C ]// GECCO 2005:2005 Genetic and Evolutionary Computation Confer- ence. New York: ACM, 2005:967-974.
  • 3赵光权,彭喜元,孙宁.基于混合优化策略的微分进化改进算法[J].电子学报,2006,34(B12):2402-2405. 被引量:20
  • 4TU Z G, LU Y. A robust stochastic genetic algorithm (StGA) foq global numerical optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2004, 8(5): 456-470.
  • 5TSENG L Y, CHEN C. Multiple trajectory search for large scale global optimization [ C ]// CEC 2008: Proceedings of the 2008 IEEE Congress on Evolutionm'y Computation. Washington, DC: IEEE Computer Society, 2008:3052 - 3059.
  • 6陆青,梁昌勇,杨善林,张俊岭.面向多模态函数优化的自适应小生境遗传算法[J].模式识别与人工智能,2009,22(1):91-100. 被引量:39
  • 7ZHONG W, LIU J, XUE M, et al. A multi-Agent genetic algorithm for global numerical optimization [ J ]. IEEE Transactions on System, Man, and Cybernetics, 2004, 34(2): 1128-1141.
  • 8ZHANG Q, LEUNG Y W. An orthogonal genetic algorithm for multimedia muhicast routing [ J ]. IEEE Transactions on Evolutionary Computation, 1999, 3(1) : 53-62.
  • 9LEUNG Y W, WANG Y P. An orthogonal genetic algorithm with quantization for global numerical optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41-53.
  • 10LIN C Y, WU WEN-HONG. Niche identification techniques in multimodal genetic search with sharing scheme [ J]. Advances in Engineering Software, 2002, 33( 11/12): 779-791.

二级参考文献29

共引文献123

同被引文献93

  • 1曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 2左其亭.论水资源承载能力与水资源优化配置之间的关系[J].水利学报,2005,36(11):1286-1291. 被引量:36
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 5HANSEN N,OSTERMEIER A.Adapting arbitrary normal mutationdistributions in evolution strategies:The covariance matrix adapta-tion[C]//Proceedings of the 1996 IEEE Conference on EvolutionaryComputation.Piscataway:IEEE,1996:312-317.
  • 6HANSEN N,OSTERMEIER A.Completely derandomized self-ad-aptation in evolution strategies[J].IEEE Transactions on Evolution-ary Computation,2001,9(2):159-195.
  • 7SUTTORP T,HANSEN N,IGEL C.Efficient covariance matrix up-date for variable metric evolution strategies[J].Machine Learning,2009,75(2):167-197.
  • 8LEUNG Y W,WANG Y P.An orthogonal genetic algorithm withquantization for global numerical optimization[J].IEEE Transac-tions on Evolutionary Computation,2001,5(1):41-53.
  • 9WANG Y,LIU H,CAI Z,et al.An orthogonal design based con-strained evolutionary optimization algorithm[J].Engineering Optimi-zation,2007,39(6):715-736.
  • 10HANSEN N.The CMA evolution strategy:A comparing review[C]//Towards a New Evolutionary Computation:Advances on Estimation ofDistribution Algorithms.Berlin:Springer,2006:75-102.

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部