期刊文献+

改进的人工蜂群算法性能 被引量:45

Performance of an improved artificial bee colony algorithm
下载PDF
导出
摘要 为克服人工蜂群算法容易陷入局部最优解的缺点,提出一种新的改进型人工蜂群算法。首先,利用数学中的外推技巧定义了新的位置更新公式,由此构造出一种具有引导趋势的蜂群算法;其次,为了克服算法在进化后期位置相似度高、更新速度慢的缺陷,将微调机制引入算法中,讨论摄动因子范围,由此提高算法在可行区域内的局部搜索能力。最后通过3个基准函数仿真测试,结果表明:与常规算法相较,改进后在搜索性能和精度方面均有明显提高。 An improved algorithm based on Artificial Bee Colony(ABC) algorithm was proposed to solve the problem that traditional ABC algorithm is inclined to fall into local optima.In the first stage,the improved ABC algorithm was derived from the skills of extrapolation in mathematics to update the new location of ABC.In the second stage,in order to overcome the deficiency of high position similarity in later stage of evolution and slow renewal rate and enhance the ability of local search in feasible region,a fine-tuning mechanism was introduced to ABC.Simultaneously,the effect of convergence subjected to different perturbation factors was discussed.Finally,the simulation results in three benchmark functions show that the proposed algorithm has better performance than traditional algorithm in search ability and accuracy.
出处 《计算机应用》 CSCD 北大核心 2011年第4期1107-1110,共4页 journal of Computer Applications
关键词 群体智能 人工蜂群 优化 摄动因子 基准函数 swarm intelligence Artificial Bee Colony(ABC) optimization perturbation factor bechmark function
  • 相关文献

参考文献9

  • 1DORGO M, MANIEZZO V, COLORNI A. The ants system: optimization by a colony of cooperating agents [J]. IEEE Transactions on System, Man and Cybernetics Part B: Cybernetics, 1996, 26(1) : 29-41.
  • 2KENNEDY J, EBETHART R. Particle swarm optimization [ C ]// Proceeding of IEEE International Conference on Neural Networks. Piseataway, NJ: IEEE Computer Society, 1995:1942 - 1948.
  • 3von FRISCH K. Decoding the language of the bee [ J ]. Science, 1974, 185(4152) : 663-668.
  • 4SEELEY T D. The wisdom of the hive: the social physiology of honey bee colonies[ M ]. Boston, Massachusetts: Harvard University Press, 1995.
  • 5KARABOGA D. A idea based on bee swarm for numerical optimization, TR06 [ R]. [ S. 1. ] : Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 6KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm [ J ]. Journal of Global Optimization, 2007, 39(3) : 459-471.
  • 7KARABOGA D, BASTURK B. On the performance of Artificial Bee Colony (ABC) algorithm [ J ]. Applied Soft Computing, 2008, 8(1) : 687 - 697.
  • 8张建科,刘三阳,张晓清.改进的粒子群算法[J].计算机工程与设计,2007,28(17):4215-4216. 被引量:32
  • 9王湘中,喻寿益,贺素良,夏利锋.一种强引导进化型遗传算法[J].控制与决策,2004,19(7):795-798. 被引量:13

二级参考文献9

共引文献41

同被引文献459

引证文献45

二级引证文献295

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部