期刊文献+

基于时间衰减和密度的任意簇数据流聚类

A data stream clustering algorithm based on time recession and arbitrary shape
下载PDF
导出
摘要 数据挖掘的一个重要分支是数据流聚类技术。基于K均值算法的基础提出了CluTA算法。该算法在处理用K均值方法分类得到的结果时考虑时间衰减因素和相似簇的合并,达到用户对时间的要求并实现了任意形状簇聚类。理论分析和实验结果都表明算法具有可行性。 Data mining technology is an important branch of the data stream mine. This paper proposed a new algorithm named CluTA which based on kmeans algorithm. This algorithm consider time factor and merged similar sets when processed results of kmeans, it could realize users requirement of time limits and product arbitrary shape date set. Theoretic analysis and experimental results showed that CluTA is feasibility.
出处 《微型机与应用》 2011年第6期17-19,共3页 Microcomputer & Its Applications
基金 安徽省教育厅重点科研项目(KJ2009A001Z)
关键词 数据流 密度聚类 均值关键点 时间衰减 data stream density based clustering key point time recession
  • 相关文献

参考文献5

  • 1Hart Jiawei. Micheline. Data Mining:Concepts and Techniques, Second Edition[M].China Machine Press,2008.
  • 2AGGARWAL C C, et al. A framework for clustering evolving data streams.In:Proc.of the 29th VLDB Conf.,2003.
  • 3GUHA S, MISHRA N, MOTWANI R. Clustenng data streams[C].Proceedings of the Annual Symposium on Foun dations of Computer Science .2000.
  • 4倪巍伟,陆介平,陈耿,孙志挥.基于k均值分区的流数据高效密度聚类算法[J].小型微型计算机系统,2007,28(1):83-87. 被引量:8
  • 5HALKIDI M, VAZIRGIANNIS M. Clustering validity assessment ;finding the optimal partitioning of adata set[C]. ICDM 2001 : 187-194.

二级参考文献9

  • 1倪巍伟,孙志挥,陆介平.k-LDCHD——高维空间k邻域局部密度聚类算法[J].计算机研究与发展,2005,42(5):784-791. 被引量:18
  • 2Han Jia-wei.Micheline.Data mining:concepts and techniques[M].Morgan Kaufmann Publishers,San Fransisco,CA,2000.
  • 3Ester M,Kriegel HP,Sander J,et al.A density based algorithm of discovering clusters in large spatial databases with noise[C].In:Simoudis E,Han JW,Fayyad UM,eds.Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining Portland,AAAI Press,1996:226-231.
  • 4Zhang T,Ramakrishnan R,Livny M.BIRCH:an efficient data clustering method for very large databases[C].In:Jagadish HV,Mumick IS,eds.Proc.of the 1996 ACM SIGMOD Int.Conf.on Management of Data.Montreal:ACM Press,1996:103-114.
  • 5Guha S,Rostogi R,Shim K.CURE:an efficient clustering algorithm for large databases[C].In:Haas LM,Tiwary A,eds.Proceedings of the ACM SIGMOD International Conference on Management of Data Seattle.ACM Press,1998:73-84.
  • 6Wang W,Yang J,Muntz R.STING:a statistical information grid approach to spatial data mining[C].Proc.Int.Conf.on Very Large Databases(VLDB97),1997:186-195.
  • 7Guha S,Mishra N,Motwani R.Clustering data streams[C].In:Proceedings of the Annual Symposium on Foundations of Computer Science,2000:359-366.
  • 8Liadan OCallaghan,Nina Mishra,Adam Meyerson,Sudipto Guha,Rajeev Motwani.Streaming-data algorithms for high-quality clustering[C].In:Proceedings of IEEE International Conference on Data Engineering,2002:685-696.
  • 9Maria Halkidi,Michalis Vazirgiannis.Clustering validity assessment:finding the optimal partitioning of a data set[C].ICDM 2001:187-194.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部